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A study is made of the motion of an extended body in arbitrary gravitational and
electromagnetic fields. In a previous paper it was shown how to construct a set of re-
duced multipole moments of the charge-current vector for such a body. This is now
extended to a corresponding treatment of the energy-momentum tensor. It is shown
that, taken together, these two sets of moments have the following three properties.
First, they provide a full description of the body, in that they determine completely
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60 W. G. DIXON

the energy-momentum tensor and charge-current vector from which they are con-
structed. Secondly, they include the total charge, total momentum vector and total
angular momentum (spin) tensor of the body. Thirdly, the only restrictions on the
moments, apart from certain symmetry and orthogonality conditions, are the equations
of motion for the total momentum and spin, and the conservation of total charge.
The time dependence of the higher moments is arbitrary, since the process of reduction
used to construct the moments has eliminated those contributions to these moments
whose behaviour is determinate. The uniqueness of the chosen set of moments is investi-
gated, leading to the discovery of a set of properties which is sufficient to characterize
them uniquely.

The equations of motion are first obtained in an exact form. Under certain conditions,
the contributions from the moments of sufficiently high order are seen to be negligible.
It is then convenient to make the multipole approximation, in which these high order
terms are omitted. When this is done, further simplifications can be made to the equa-
tions of motion. It is shown that they take an especially simple form if use is made of the
extension operator of Veblen & Thomas. This is closely related to repeated covariant
differentiation, but is more useful than that for present purposes. By its use, an explicit
form is given for the equations of motion to any desired multipole order. It is shown
that they agree with the corresponding Newtonian equations in the appropriate limit.

1. INTRODUCTION

In the general theory of relativity, all material systems possess a symmetric energy-momentum
tensor 7% which occurs as the source term of the gravitational field equations

R“ﬂ—%Rg“/? = g 1B, (1.1)
By the contracted Bianchi identity, these are consistent only if
VT = 0. (1.2)

The four restrictions that this places on the ten components of 7%/ have, as their nearest New-
tonian equivalent, the equations of motion of a general continuum and its equation of energy
conservation. But to make the motion determinate, one must add further restrictions which will
be specific to the particular type of matter under consideration. This is usually achieved by
expressing 7%# in terms of variables more characteristic of the particular system being studied,
and then imposing equations of state on these new variables. For example, a simple perfect fluid
may be described by its density p, pressure p and velocity #*, with

T8 = puub + p(ueuf — g*F). (1.3)

Since u*u, = 1, we have reduced the number of variables from ten to five. The system thus
becomes determinate if we add to (1.2) an equation of state relating p to p.

If sufficient is known about the matter being studied, then it is always possible to proceed in
this way. Suppose, however, that one is interested in the motion of a planet in the Sun’s gravita-
tional field. This is largely independent of the detailed internal structure of the planet, and to
high accuracy can be determined in Newtonian theory from a few parameters, especially its
total mass and principal moments of inertia. Such a problem needs a different approach. Many
authors have attempted to develop equations of motion for extended bodies in general relativity
that correspond to these Newtonian results. This Introduction discusses the difficulties that face
any such attempt, and shows why previous treatments, all of which make a direct attack on the
equations of motion, are unsatisfactory. In the remainder of the paper it will be shown how
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EXTENDED BODIES IN GENERAL RELATIVITY. III 61

these difficulties can be overcome by approaching the problem from a different direction. Stand-
ard notations and conventions that will be used throughout the paper are summarized in
appendix 1.

To form a guide to the features that we require of the relativistic theory, we first consider the
corresponding Newtonian equations. For these, all tensor indices will be written as subscripts,
latin indices which run from 1 to 3 being used. Let z,(¢) be the Cartesian coordinates of a moving
point about which all moments will be taken, and let v, = dz,/d¢ be its velocity. This point will
normally be chosen as the centre of mass of the body, but it is convenient for the time being to
leave it arbitrary. If p is the mass density and u, the material velocity at a general point of the
body, then the total momentum p, and angular momentum S, = S,; of the body are defined by

ba = J.puadaxa Sap = 2fp7[aub] d?x, (1.4)
where r, = x,—z,. The resulting equations of motion of the body, in a gravitational field of
potential ¢, are

d[)a/dt == qusadax (1.5)
and dS,,/dt = 2p1, 01— 2 [ priy Py dis, (1.6)

where ¢, = 0,¢. If the gravitational field varies only slowly through the region occupied by the
body, ¢ can be approximated by the first few terms of its Taylor series about z,. In this way we
get the multipole expansions

1
dp,[dt = — Eambl...bnaabl...bngb (1.7)
1
and dSab/dt = 2p[avb] -23 ;le01-~~cn[a ab]cl‘,.cn¢: (1'8)
where My, ...ap = fpral...rand‘*x for n> 0. (1.9)

The summationsstart at # = 0 and terminate at a value that gives a sufficiently good approxima-
tion to ¢.
In addition to (1.7) and (1.8), the variables appearing in these equations must also satisfy

dm/dt = 0 (1.10)

and dm,/dt = p, —muv,, (1.11)
in consequence of the mass conservation equation

0p[0t +0,(puy) = 0. (1.12)

This leaves the time dependence of v,, and of m, _, for n > 2, undetermined. Since the base
point z,(¢) was arbitrarily chosen, we expect v, to be arbitrary. If we choose it to be the centre of
mass of the body by imposing m, = 0, then (1.11) gives p, = mv,. The situation is different for
the moments m, ._q,(¢), n > 2. Their time dependence is determined by the internal structure
of the body, and its motion is not determinate until further information is given about them. They
are thus similar to the density p in (1.3), which must be specified as a function of the pressure
before the motion of the fluid becomes determinate. They are also similar to p in their arbitrari-
ness. The function p(p) is specifiable arbitrarily, subject only to certain general inequalities
such as the velocity of sound being less than that of light. It may not be possible to find a physical
material with the prescribed behaviour, but that is a different problem. Similarly, the functions
8-2
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62 W. G. DIXON

My, ...a,(¢) are arbitrary forn > 2, subject only to certain general conditions arising from requiring
p > 0in (1.9).

It is this separation of the parameters determining the motion into determinate parameters
m, p, and S,, describing the overall motion of the body in space, and arbitrarily specifiable
parameters m, _, (n > 2) characterizing such behaviour as internally produced deformations
of the body, that is the main feature of the Newtonian situation that we wish to reproduce in the

relativistic theory. In Newtonian theory, a rigid body with angular velocity £, (¢) has
Ua(%,2) = 04(0) + (D) 1y
If z, is chosen as the centre of mass, this implies that
Sap = 2my, 2y, (1.13)
and dme g Jdt = 10 0y Daye (1.14)

which, together with the above equations, make the motion determinate. Provided that rela-
tivistic parameters can be found having a similar arbitrariness, a relativistic ‘ideal rigid body’
can be characterized by adopting corresponding equations as definitions. Note that it is irrelevant
whether or not such an ideal body exists —its use is to serve as an approximately realizable idealiza-
tion, the effects of departure from which are small and can be separately investigated.

The desired separation can be achieved easily in Newtonian theory because the gravitational
force is determined solely by the mass density. In a relativistic theory, all forms of energy have
an equivalent passive gravitational mass. In particular, this applies both to the kinetic energy
of internal motions and to the elastic energy of internal stresses. Since these are described respec-
tively by the 7°% and 7% components of the energy-momentum tensor, we sce that the relativistic
analogue of the m’s appearing on the right hand sides of (1.7) and (1.8) must be moments con-
structed out of the full tensor 7%. The general idea is to pick an arbitrary timelike world line /,
and to define moments of 7%/ as tensor fields along /. These will include the total momentum
p* and spin $¥* of the body, and the equations of motion sought will be for the absolute derivatives
&p~[ds and 8S8*}/ds, where s is a parameter along [ and 8/ds = (dx*/ds) V,,.

The problem of defining a covariant set of moments of 7%# is easily solved. There are many
ways of doing this, the following simple method being just one possibility. If z*(s) is a parametriza-
tion of /, put v* = dz*/ds. To define moments at s = s, set up a normal coordinate system with
pole at z, = z(s,) and such that

v (so) = 03, &y, =diag (1, —1, —1, —1) at z, (1.15)
Put prrsnn(se) = [xe L anTM(x) f(—g) w*dZ,, (1.16)

where w* is some canonically defined vector field and the integral is over the spacelike hyper-
surface 4% = 0. The 2”-pole moment of 7%/ at s = s, is then taken to be the unique tensor at z,
which reduces to this value in any such normal coordinate system. It is orthogonal to v* on its
first z» indices, and so has 5(n+ 1) (rn+ 2) linearly independent components. These moments are
generally considered in relation to a second set, with one fewer index, defined similarly by
requiring

pr(s) = [ The(x) (—g) dE, (1.17)

to hold in the same normal coordinate system. These have the same orthogonality property, with
2(n+1) (n+2) linearly independent components. The momentum vector may be defined by
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EXTENDED BODIES IN GENERAL RELATIVITY. III 63

(1.17) with n = 0, while the spin tensor may be taken as §¥* = 2pl<4l, Equation (1.2) can then be
used to evaluate 8p*/ds and 8S%*/ds in terms of the #’s.

If the #’s could be prescribed arbitrarily, the problem would then be solved. Unfortunately,
this is not so since there are an infinite number of relations between them, also as a consequence
of (1.2). It is thus necessary to re-express the equations of motion in terms of an alternative set
of moments which is free from such interrelations. We shall call such a set the reduced moments
of 7%A, in contrast to such a set as the £’s which we call complete moments. Since the whole of 7% is
involved in determining gravitational effects on the motion, these reduced moments must, like
the #’s, actually contain enough information to completely determine the 7% from which they
are constructed.

A simple illustration of a reduced moment is provided by considering the Newtonian dipole
moment of the momentum density pu,. The complete dipole moment p, is defined, in the notation
of (1.4), by

Dy = fpraubd"x. (1.18)
However, it follows from (1.12) that

Pl = MgV + 5dmp/dt. (1.19)

Hence the m’s, which we assume known, determine p,,, and it is thus only necessary to give
separately its antisymmetric part. This is precisely the spin tensor, S,; = 2p;,,, so that the use of
S, instead of p, is an example of the reduction process.

The equations corresponding to (1.19) in the relativistic theory, needed to start the reduction
of the moments ¢ of (1.16), each contain an infinite number of terms. This makes any direct
approach to the reduction process extremely difficult. It seems that to make any progress at all,
it is necessary to neglect all moments higher than a certain low order, e.g. dipole or quadrupole
order. Even then, the quadrupole case still presents difficulties, as will be seen below. Previous
attacks on the problem, such as those of Mathisson (1937), Papapetrou (1951), Tulczyjew
(1959), Dixon (1964), Taub (1964) and Madore (1969), have all been based on such a cutoff.
This may be formalized as a limit in which the size of the body is shrunk to zero. However, the
intended applications are as approximations to the motion of a body of small but nonzero extent.
In this case the neglect of the higher moments must be based on the smoothness of the field,
as in the derivation of (1.7) and (1.8). This in turn relies on the order of the derivative of the field
that occurs in combination with a particular moment in the equations of motion increasing as
the order of the moment increases, as is also the case in (1.7) and (1.8). Although it is intuitively
reasonable that this should happen, it actually does so only if the definitions of the moments are
suitably chosen.

These points will be illustrated from the results of Taub (1964) and Madore (1969), who both
use a cutoff at the quadrupole terms. Similar difficulties are present in the methods used in the
other papers mentioned above, but they all make a cutoff at the dipole terms, and it is only at the
quadrupole level that the main problems of the method become apparent. An additional com-
plication is that both Taub and Madore have non-trivial algebraic errors in their calculations
which affect their final equations of motion. The results that we quote below use the corrected
versions. We shall write p* and §** for the momentum and spin tensors used by the author quoted,
without entering into their precise definition. In both cases it is along the lines of the above
discussion, and the precise form is immaterial for our purposes.
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64 W. G. DIXON

We begin with the results of Madore. He uses a three-index quadrupole tensor M+ = Af &0 p
and obtains

8p.ds = Ry, (3018 + F8MA#[ds) — 3vAMP Y R, ), (1.20)

and 8BS ds = opiu 4 4RV, MPom, (1.21)

where v = dz*/ds. Madore’s error, originating in his equation (41), has the effect of omitting
the symmetrization over A and x present in the final term on the right hand side of (1.20). We
see that (1.20) contains a term in which the quadrupole moment interacts with an undifferen-
tiated curvature tensor. This is the expected behaviour for a dipole, rather than a quadrupole,
term. It gives the first indication that the method violates the requirement that higher order
moments interact with higher order derivatives of the field. The origin of this unwanted term
lies with a poor choice of definition for the total momentum p,. If the equations are rewritten
in terms of *p,instead, where

*pl( = pK.—— %MA/L‘JR

KA VY (1.22)

then M*#” does appear only in combination with the derivative V,R,, , as required. Since the

KAy
validity of using a multipole cutoff for bodies small in comparison witll; the length scale of the
external field depends on this requirement, this illustrates clearly the need for care in the
definition of the moments.

A difficulty of a different nature arises over the definition of the quadrupole moment. AfA#
is essentially constructed from the p*#» of (1.17). This involves only the energy and momentum
components of 7%#, with no contribution from the internal stresses. It thus cannot contain enough
information for the complete quadrupole moment #*#*# to be reconstructed, in the way that (1.19)
enables p,, to be reconstructed from S,. This shows up in Madore’s derivations. He has
to assume that certain contributions to the equations of motion, arising from the gravitational
interaction with the internal stresses, are comparable with the neglected octopole terms although
they formally appear to be of quadrupole order. They are then also neglected. This is accomp-
lished by adopting a formula expressing #*#*# in terms of M** that would be valid if the stress
terms were negligible. Although Madore claims that this is necessary only in the derivation of
(1.21), correction of the error mentioned above in the derivation of (1.20) necessitates using it
also for that equation. Although not stated by Madore, this adopted formula actually places a
further restriction on M*#*, implying that it must have the form

M/\/w — 21)\,1@)1’.-4[1’()‘1)/1)’ (123)
where I* = [k and  p,I* = 0. (1.24)

The quadrupole moment is thus being described by a six component tensor /*# analogous to the
Newtonian m,, of (1.9), which also has six components. Thus the momentum contributions to
the quadrupole moment, from 7°¢, are also neglected in this treatment.

Taub similarly introduces an assumption concerning the quadrupole moment which is addi-
tional to those due to the quadrupole cutoff. In contrast to Madore, he explicitly uses it to reduce
the corresponding tensor to a symmetric /2%, but one satisfying v, /** = 0 instead of p, I** = 0. If
S« is identified with Taub’s 2LM, his equations of motion are

8p[Jds = R, (307S# +8 (I'”) [ds) —v eIV, R, , (1.25)

and 8S<A[ds = 2ptoM — R, (41N yryp — 208 vP]wv). (1.26)
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EXTENDED BODIES IN GENERAL RELATIVITY. III 65

His error appears first in his equation (2.9), and has the effect of replacing the coefficients 4 and 2
in the final bracket of (1.26) by 2 and 0 respectively. The momentum equation again contains
a term in which the quadrupole moment interacts with an undifferentiated curvature tensor,
and again it is removable by using a different momentum vector *p,.. This time we need to put

*pe = pe — Repn V0. (1.27)

Even if the neglect of the momentum and stress contributions to the quadrupole interaction
can be justified when a quadrupole cutoff is used, it is only pushing away by one step the prob-
lems that they introduce. These will certainly have to be faced if the octopole case is to be treated.
What is essentially happening is that a guess is being made, namely that the reduced quadrupole
moment tensor is essentially the p<*# of (1.17), and it is turning out to be incorrect. To make it
work, it is then necessary to suppose that the quadrupole structure of the body is of aspecially
simple kind, describable by the six-component tensor /~,

The balance between arbitrarily specifiable moments, and moments adequate to determine the
motion, is a very fine one. Since the reduced moments must strike this balance, they are unlikely
to be found by a priori guesses. The above discussion shows that the quadrupole case is about the
limit at which anything useful can be achieved in this way, and even the general quadrupole
seems beyond its reach. To make further progress the problem must be turned round, with atten-
tion directed primarily on finding an appropriate set of reduced moments for 7%f. When this
has been done, the equations of motion should follow naturally. The present paper adopts this
approach, and shows that it avoids the need to make any cutoff at all in the multipole series.
We shall determine the reduced moments of all orders, and shall explicitly find equations of
motion in terms of them, correct to any desired order. For comparison with the results discussed
above, the equations we obtain for a general quadrupole are

Sp.ds = J*SPR,, ,, +3JVV Ry, (1.28)
and 88t ds = 2ptN — R JA e, (1.29)

The quadrupole moment tensor J4#* has the symmetries of the curvature tensor, and thus has
20 linearly independent components. This is less than the 60 of the complete moment ## of
(1.16), asis expected due to the reduction process. It should be compared with the 24 of Madore’s
initial choice M *#* and the 6 that are left after AZ*#” has been forced into a role for which it is
inadequate. Both Madore’s and Taub’s results are special cases of (1.28) and (1.29), obtained by
taking p, to be the *p, of (1.22) or (1.27) as appropriate, and by setting

JAwvp — . GylA Jullvypl (130)

in both cases. Note that there is a qualitative difference between the effect of the reduction pro-
cess on the monopole and dipole moments, and on the quadrupole moment. In the first two
cases the number of indices is decreased by the reduction, ## and t*#” yielding p* and S*# respec-
tively. For the quadrupole, however, the effect is to increase the symmetry of the tensor without
changing the number of indices. This will be seen to hold also for all higher moments, the resulting
reduced 27-pole moment (z > 2) having (n+ 2) (3n — 1) linearly independent components in com-
parison with the (z+ 2) (5n+ 5) of the corresponding complete moment.

Let us now consider how the problem of finding the reduced moments of 7% might be
approached. We note first that it is not necessary to have gravitational forces present to make this
a non-trivial problem, but in their absence the emphasis changes as these moments will no longer
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66 W.G. DIXON

affect the motion of the body. The requirement that they must be sufficient to determine the
motion must be replaced by one requiring them to be sufficient to completely determine the
1% from which they are constructed. A guide to the gravitational case may thus be found by
first considering the special relativistic theory of a body moving under electromagnetic forces.
This case has been previously treated by the present author (Dixon 1967). Unfortunately, while
the results obtained will be useful for this purpose, the methods used there are not extendable to
deal also with the gravitational case.

The present paper is the third in a series devoted to tackling the additional problems which
gravitation introduces. The two preceding papers in the series (Dixon 19704, b) will be referred
to as I and II respectively. The first of these studied in isolation the problem of defining the total
momentum and spin of the body. This used as a guide the requirement that to every symmetry
of the external fields there should correspond a conserved linear function of these variables. It
was shown that this leads to essentially unique definitions, whose consequences were then studied
in more detail. The second paper treated, in curved spacetime, the question of defining reduced
moments for the charge-current vector J# of an electrically charged extended body. Since this

satisfies
V,J* =0, (1.31)

it is analogous to, but simpler than, the corresponding problem for a 7% satisfying (1.2). The
analogue of the equations of motion for p* and §* is, for J2, the equation of conservation of total
charge ¢. This is simply dg/ds = 0, which does not involve the higher moments of J*.

The treatment of 7%/ in the present paper draws upon I for guidance in dealing with a curved
spacetime, and upon Dixon (196%) for guidance as to the properties to be expected of the reduced
moments of 7%, It links with I through the appearance of the p* and §* of T as a natural conse-
quence of the reduction process, thus further supporting the definitions proposed there. It is
convenient to treat the more general case of a body moving under the influence of both gravita-
tional and electromagnetic forces, as the additional complications introduced by the electro-
magnetic field are small in comparison with those already present in the gravitational case, and
it enables a ready comparison to be made of gravitational and electromagnetic eflects. We thus

replace (1.2) by
VTP = —F*8 ], (1.32)

where F*# is the electromagnetic ficld tensor. A further generalization is required of the pro-
cedure used in IT for J*. To motivate it, an outline is given of the theory for J#, presented in the
form closest to that to be used for 7%. Where steps in the treatment of 7% follow the correspond-
ing steps for J* without any novel features, they will be omitted and reference should be made
to II for the method of proof.

The equations of motion that are finally obtained are

1e 1
SPK/dS = %UAS/WRKA/W - qvAFK)t +§né2%_!_lvl...vn Mtvkg)\,u, VyeVp

et n
+ Zl (ﬂ+ 1)'myl.“vn)‘VKF)((V],VQ...Vn) (133)
— !
© 1
and BSds = 2plepl n>;1 ;z-ig”[KIA]PI"-Pn G ) oy

(1.34)

T P1- P’

® 1
+2 E _gu[/cm/l]pl...pn;LF
n=0 n!
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The sums to infinity are formal, in that in general they will not converge. They should be cut
off at an appropriate order, just as for the Newtonian equations (1.7) and (1.8). We shall, how-
ever, also obtain an exact version of these equations in which no such convergence problem
arises. [ is for n > 2, the 27-pole moment tensor of 7%, while mA1-*n# for n > 1is the cor-
responding tensor for J*. Indices following a comma denote the tensor extension operation of
Veblen & Thomas (1923). This is related to repeated covariant differentiation, but is more
convenient than that for our purposes. Itis defined in appendix 2, and techniques are given there
for evaluating such extensions in terms of more commonly used quantities. The symmetrizing
bracket notations used above are defined in appendix 1. The moments satisfy

Thetnpwy = [Qred) ) and [Pl = O for n > 2,
n/\lI"lm’\n-z[/\n—l[/\n/t]v] =0 for n>3 } (1.35)

and mAdak = maddr and  mAa-ad =0 for n 2 1,
nmy mhtn-Pail = 0 for n > 2, } (1.36)

and have, respectively, (z+2) (3n—1) and }(n+2) (3n+ 1) linearly independent components.
The tensor J**#¥ of (1.28) and (1.29) is related to these by

Jwr = [\ and [ = &M, (1.37)

The vector field #, is timelike but otherwise arbitrary along /, forming together with / the reference
system with respect to which the moments are defined. Both 7, and [ are simultaneously deter-
mined by a suitable definition of the centre of mass of the body, as discussed in I. The close cor-
respondence between the electromagnetic and gravitational termsin (1.33) and (1.34) is evident.

During the detailed development of the theory, we shall need certain mathematical techniques
invblving the use of vector bundles. To avoid these interrupting the main body of the work, these
are presented separately in the following two sections. In the development given in II, it also
appeared natural to express certain constructions in the language of fibre bundles. This was
almost entirely for descriptive purposes, however, and arose as certain naturally occurring func-
tions were functions on the tangent bundle 7'M of the spacetime manifold A4. This will again be
so in the present paper, but in certain parts of the development it will be necessary to use results
from the differential geometry of such bundles. This is to enable us to covariantly differentiate
tensorial functions on 7'M with respect to their base point in M, for which we need a connexion
on the appropriate bundle over 7M. In particular, the exact form of the equations of motion
involves this operation. Although it is possible to express the results without using such operators,
they then seem artificial, and it is clear that bundle theory provides the natural language in
which to express them. We thus give in §2 a brief account of those aspects of bundle theory that
we shall need. This is restricted to vector bundles, and for those properties of connexions that
we shall use, we follow the connexion map formalism of Dombrowski (1962). Although less well
known than the more general theory of Kobayashi (1957) using principal bundles, it is better
suited for our purposes as the introduction of principal bundles would only be an unnecessary
complication. Section 2 also serves to introduce the notation of bundle theory that will be used
in the rest of the paper.

Section 3 develops the relation between two-point tensors on A and certain fields defined on
the tangent bundle. The results obtained here, and in the latter part of §2, are essential to the
derivation of the equations of motion, but they do not find their main application until §12,
apart from in that small portion of § 8 which forms the basis of § 12.

9 Vol. 277. A.
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68 W. G. DIXON

The development of the theory of moments starts in §4, and is based on certain moment
generating functions. In §§4 and 5 we introduce these functions and associate with them certain
functionals on 7M. At this stage no attempt is made to link the moments with the fields 7%/ and
J* which they are eventually to describe. Instead, certain properties are assumed for the mo-
ments as working hypotheses, based on the known situation in special relativity, and their conse-
quences are then investigated to suggest ways of linking the moments to their corresponding
source fields. In §6 a number of preliminary results are obtained to assist in this linking process.

Up to this stage the theories of the moments of both J* and 7%/ are developed together. In
§7 we separate the two by completing the development of .J# The method starts by first hypo-
thesizing a provisional linkage between J* and its moments. From this, not only are the existence
and uniqueness deduced of moments having the properties assumed in §4, but also a result is
obtained which forms the basis of a new, and better, definition for the moments. The existence
and uniqueness properties are then proved from the new definition by reducing them to those
already proved for the provisional definition.

This roundabout method is not really necessary for dealing with J% Section 7 just rederives
results obtained in II by directly assuming, and working from, the result eventually adopted in
§7 as the final definition. But by taking this as a model, the more difficult case of 7%/ can be
treated, for which it does not seem possible to omit the stepping stone provided by the provisional
linkage. The provisional linkage for 7%/ is given and studied in § 8. In the course of this, the equa-
tions of motion for the momentum and angular momentum are obtained, but further study of
these is deferred until §12. The development from the provisional definition is completed in
§9 by a derivation of explicit expressions for the moments as integrals over spacelike cross-
sections of the body.

By this point we are in a position to give the final characterization of the reduced moments
of T*#. Since this is one of the main results of the paper, it is given in § 10 in the form of a fairly
self-contained theorem. This is intended to act also as a summary of the results of the previous six
sections. Section 11 then completes the proof of this theorem.

The equations of motion that were obtained in §8 are studied in more detail in §12. This
treatment maintains their exact form, which is useful for further analytical development, but
for practical use it is more convenient to have approximate, but more manageable, equations.
Such equations are found in § 13 by making the multipole approximation, thus obtaining (1.33)
and (1.34). They are approximate only in so far as the infinite series involved do not in general
converge. The contribution from each multipole order is exact. The paper concludes with a
general discussion of the results in § 14.

It is suggested that the reader turns next to §§10 and 13 for a more detailed statement of the
main results of the paper. With §10 acting as an introduction to the notation, the development
can then be picked up from §4 onwards. Sections 2 and 3 can be studied at any stage, but as men-
tioned above, the most powerful results of those sections are not nceded until the equations of
motion are studied in detail in §§12 and 13.

2. RESULTS FROM THE THEORY OF VECTOR BUNDLES

We give now a brief account of those definitions and results from the theory of vector bundles
that we shall need later. A more detailed account of vector bundle theory, avoiding the use of
general fibre bundles, is given by Lang (1962). It does not include the theory of connexions, but
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EXTENDED BODIES IN GENERAL RELATIVITY. II1 69

an account of this in the spirit of Lang’s book is given by Vilms (1967), using the connexion map
approach of Dombrowski (1962). Throughout this section, all manifolds and mappings between
manifolds will be assumed to be of class C*. We start with some definitions.

Let GL(V) denote the group of all nonsingular linear transformations of an n-dimensional
real vector space V. If £ and M are manifolds, a map 7: &/ — M is called an #-dimensional real
vector bundle if it satisfies these two conditions:

(1) There exists an open covering {U;} of M and, for each ¢, a diffeomorphism

@i Uy x V—7=YU;) suchthat wmo¢,(x,u) =« forall (xu)elUxV.
(i) IfxeU;,let ¢yt V -> m~1(x) be defined by ¢, (4) = ¢;(x, ). Then we require that
biz 0P €GL(V) forall xelU;nUj,

and that the map r;;: U; n U; - GL(V) defined by ¥ ;;(x) = @53} 0 ¢, be of class C°.

E is called the bundle space, M the base space and 7 the projection of the bundle. By abuse of
language we sometimes describe £ as being a bundle over M. If xe M, E,: = 7—(x) is called the
fibre over x. If xe U, then ¢,, naturally induces a vector space structure on E,, which by (ii) is
independent of the choice of U,

A cross-section of the bundle 7 is a map f: M - E such that mof: M - M is the identity map.
Let y: I - M be a curve in M, where I is an open interval of the real line R. A lift of y to E'is a
curve f: I - I in E such that y = mo . The cross-sections of 7 clearly form an infinite dimen-
sional vector space, with addition and scalar multiplication being performed pointwise in the
vector space structure of the fibres. The same is true of the lifts of a given curve in M.

Let 7}, be the tangent space to M at xe M. Then TM: = U, ,, T, can be made into a vector
bundle over M, called the tangent bundle of M. Define the projection 7: TM - M by 7(X) = x if
XeT,. Let {U;, 0,} be an atlas of local coordinates on A, so that {U;} is an open covering of M and
0;: U; - R™ is one-to-one, where m = dim M. Then {7~}(U})} is a covering of TM. We give TM
the structure of a 2m-dimensional manifold by specifying, as the local coordinates of Xe7-1(U),
the m coordinates 6;07(X) of the base point together with the m components of X with respect
to 0,. With this structure, 7: T7M - M becomes an m-dimensional vector bundle. Its cross-
sections are the vector fields on M, and a lift of a curve y in M is simply a vector field along 7.
In a similar manner we can also construct the tensor bundle 75: T5(M) - M of type (r,s). This is
formed from all tensors on M of contravariant degree r and covariant degree s. Then 7§ = 7,
the tangent bundle, and 79 is called the cotangent bundle of M.

If Vis a vector space, the tangent space T,(V) at each point « € I is naturally isomorphic to V.
There is thus a canonical isomorphism 7V — V@V of the tangent bundle of ¥ under which
X+ (u,v) if XeT,(V) and v is the image of X under the above natural isomorphism. Similarly
the tensor bundle 773(V) is canonically isomorphic to V@ V%, where V% is the tensor space over
V of type (r,s). The bundle structure is then trivial in both these cases. We shall need these
observations below.

Suppose 7: E — M and p: F'-> N are vector bundles, not necessarily of the same dimension.
Given maps a: F'— Eand f: N - M, we say that « is a bundle map over fif moa = fop and if,
for each y € N, @ maps F, linearly into Ej,,. Now suppose further that « induces an isomorphism
of these fibres, which does require the bundles to have the same dimension. If z: N - Fis a
cross-section of p, put : = @ oh, so that moh = #. Then A / is a one-to-one correspondence

9-2
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70 W. G. DIXON

between all cross-sections & of p and all maps h: N — E satisfying mok = . In particular,
if f is a cross-section of , then A: = fo B satisfies this condition. The corresponding cross-
section of p is denoted by a#f, and is said to be induced from f by «.

Next we have a technique for constructing new bundles from a given one. Suppose we are
given a vector bundle 77: £ — M, a manifold N and a map £: N - M. Let p and o be the projec-
tions of the product manifold N x £ onto N and E respectively, and let N x,, E denote the subset
of N x E diagonal over M, i.e. (y,u) € Nx,, E if f(y) = m(u). The bundle structure of 7 ensures
that N x,, £is a submanifold of N x E. Let f#m and 7% £ be the restrictions of p and o respectively
to Nxy E. Then p#m: Nx,E— N is a vector bundle, said to be induced from 7 by g, and
m#B: N x 3, E— E is a bundle map over # which maps fibres isomorphically. From our above
remarks, the cross-sections % of f#m are thus in one-to-one correspondence with the maps
k: N — E satisfying moh = f, this correspondence now being given by

hi— h = (7#p) oh. (2.1)

We shall frequently represent cross-sections of induced bundles in this way, as it avoids the use
of the manifold N x,,FE, which is rather cumbersome in notation. If £ = T%(M) and 7 = 7,
we shall follow Bishop & Goldberg (1968, §5.9) in describing such a map % as a tensor field of
type (r,s5) on N over S.

We now introduce some notation concerning derivatives of maps. If y: /- Nis a curve in a
manifold N, and ¢e [ the tangent vector to y at ¢ is denoted by y'(¢). Hence y’': - TN is a lift
of y to TN, called the canonical lift. If ¢ : N — M is a map of N into another manifold A, the
derivative ¢, of ¢ is the unique map ¢ : TN - TM such that ¢, 0y’ = ($ovy)’ for all curves y
in N. Itis a bundle map over ¢ of the corresponding tangent bundles. In terms of local coordinates
{y*} and {¥*} on N and M respectively, if YeT,(N) and X = ¢, Y e T, (M) with x = ¢(y), then

X% = (0xk[0y*) Y=.

If ¢ is a diffeomorphism, then ¢ is a vector space isomorphism on corresponding tangent spaces.
But an isomorphism between two vector spaces can be uniquely extended to an algebra iso-
morphism of the corresponding tensor algebras. By so extending ¢, at each point of N, we obtain
a bundle map ¢ ,: T5(N) - T5(M) over ¢ of the tensor bundles of arbitrary type. The map ¢,
will also be a diffeomorphism, and we shall denote its inverse by ¢4. Acting on the cotangent
bundles, ¢4 is just the transpose of ¢,,. Using the same local coordinates as before, if @ € (77),(N)
and P = ¢, Qe (T}) (M), then Q = ¢4P and

k y; o 1

If M is an m-dimensional manifold and r < m, an r-dimensional (differentiable) distribution S
on M is an assignment to each x € M of an r-dimensional subspace S, of T,,(M ), in such a way that
S is locally spanned by r differentiable vector fields.

Now let 7: E — M be an n-dimensional vector bundle over M, so that dim £ = m +n, and let
7y TM — M be the tangent bundle of M. Then TE has two natural bundle structures, for
my: TE — TM gives it the structure of a 2z-dimensional vector bundle, in addition to its (m +n)-
dimensional bundle structure as the tangent bundle 7,: TE — E of the manifold E. To define
the vector space structure on the fibres of 7, let Xe TM and U, Venz'(X). Suppose y is a curve
in M such that X = y’(0), and let I} and I, be lifts of y to E satisfying U = I'1(0), V = 1'3(0).
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Thenifa, b€ R, we define aU + bV = (al'y + b1%)’ (0). The maps 7, and 75 thus both play a dual
role. For 7, is both a bundle with base 7'M, and a bundle map of 7 to 7,; over 77, while similarly
T 1s both a bundle with base E, and a bundle map of 7, to 7 over 7,,.

The set of vectors Ve TE satisfying 7, V = 0 forms an n-dimensional distribution ¥~ on E,
called the vertical distribution. If xe M and w € E,, then ¥, = T, ,(E,), which is a subspace of T,,(E).
An m-dimensional distribution # on E is said to be horizontal if ¥, n H#,, = {0} for all wekE,
in which case m, maps #,, isomorphically onto 7;;: = T,,(M). Since then T ,(E) =#,,® ¥,, any
UeT,,(E) can be uniquely expressed as the sum of a horizontal and a vertical component, and the
horizontal component is uniquely determined by m,UeT,. We now define a bundle map
D: TE — E of 7 to m over m such that DU determines the vertical component of U. D is the com-
position of two maps. We first map U into its vertical component, which lies in 7,,(E,), and then
map this into E, by the canonical isomorphism of these two spaces. The map U (7, U, DU)
is then an isomorphism of T,,(E) onto T, ® E,.

Although by construction D is a bundle map of 7 to  over 7, in general it will not be a bundle
map of the other bundle structure 7, on TE, which it could map to 7 over 7;,. For although
moD = Ty 0m,, in general D will not be linear on the fibres of . If D s linear on these fibres,
then the horizontal distribution 5 is called a connexion on 7, and D is called the connexion map.
If f: M — E is a cross-section of , and X €T, the covariant derivative Vy fe E_ with respect to
this connexion is defined by

Vif=D(fuX). (2.3)
If X: M — TM is a vector field on M, then Vy fis also a cross-section of 77, and (2.3) becomes
Vxf=Dof,olX. (2.4)

We now tie this up with the concept of a connexion as used in elementary tensor calculus. This
is done through the notion of parallel displacement. If y is a curve in A through x and y, and
if ve E,, then there is a unique lift I" of v through v whose tangent is everywhere horizontal.
It is called the horizontal lift of y through v, and if w is the point of I" above y, we say that w
is obtained from v by parallel displacement along y. The linearity of D on the fibres of 7,
ensures that parallel displacement maps E, linearly onto E,. By identifying the parallel
displacement of tensors in tensor calculus with the parallel displacement of the fibres in a
tensor bundle in this sense, we see that an affine connexion on M in the sense of tensor calculus
provides a bundle connexion on each tensor bundle 77 (M) in the above sense. We can also
put (2.3) in a more familiar form. Let y be a curve in M with y’(0) = X, and let v(¢) € E, be
obtained from foy(t) by parallel displacement back along y. Then

Vxf = [dv/dt];, (2.5)

This agrees with the definition used in tensor calculus if £ is a tensor bundle over M.

The final construction that we shall need is that of induced connexions. Let 7: £ — M and
p:F— N be vector bundles of the same dimension, and let a: F — E be a bundle map which
maps fibres isomorphically. If # is a connexion on 7, then ax'5# is a connexion on p, said to be
induced from # by a. It is the unique connexion on p such that e, maps the horizontal subspaces
of TF linearly onto horizontal subspaces of TE. Note that a, always preserves vertical subspaces.
The corresponding connexion maps Dy and Dy are related by

aoDp = Dyoay. (2.6)
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In particular, we can apply this to an induced bundle f#7. Let Y be a vector field on N, & be a
cross-section of f#m and & be defined by (2.1). We shall write V£ for the map N E representing
V3 h under the correspondence (2.1). Then from (2.1), (2.4) and (2.6) we see that

Vyh = Dgyoh,oY, (2.7)

which involves only the connexion map on 7.

We can now apply the above to the case which will be of most importance in our theory of
moments. Let M be a pseudo-Riemannian manifold, and take 7 to be the tensor bundle over A/
of type (r,s). Considering 7: TM — M simply as a mapping of manifolds, we form the induced
bundle 7#7 over 7M. On this we put the connexion induced by 7#7 from the Riemannian con-
nexion on M. This gives us enough structure to enable us to define a covariant derivative of a
tensor field @ on TM over 7. Itis given by (2.7), which defines V, @ if P: TM — TTM is a vector
fieldon TM.

We next evaluate V, @ in terms of the ordinary covariant derivative on M. Let I" be an orbit
(integral curve) of P, i.e. a curve in 7M such that I” = Po[l’, and put y =70/. Then y is a
curve in M, and I'is a lift of y to T'M. Hence there is a vector field X on M such that I'= Xov,
X being uniquely defined only along . This implies " = X, 0y’, and so on using (2.7) and (2.4),

we get
(Vp®) ol =V, (doX). (2.8)

As @ o X is a vector field on M, the final covariant derivative in (2.8) is the ordinary one on M.
As there exists an orbit of P through every point of 7'M, this thus completely determines V@
in the required form.

Since the construction of 7"T°M is rather complicated, we now introduce an alternative notation
which only involves the manifold 7M. Let D be the connexion map of the Riemannian con-
nexion on 7. We saw above that if Q e Tx(TM), then the map Q+ (7, Q, DQ) is an isomorphism
of Ty (TM) onto T,,(M)®T, (M), where x = 7(X). We use this to write Vo @(X) as Vi, 5 P(X),

where A:=71,Px and B:= DPy.

Note that it takes the triple (4, B, X) of tangent vectors to M at x to specify a value of P completely.
This is why we write the field point X explicitly in V(, 5 @(X). However, we can denote the field
Vp® unambiguously by Vi, 5 @ if we let A and B become vector fields on TM over 7. We need

to put
A=71,0P, B=DoP, (2.9)

so that Ay = 74Py, Bx = DPy as before. We see that 704 = 70 B = 7,50 that 4, B are indeed
vector fields on 7'M over 7 in the sense defined above.

Let us now find local coordinate expressions for these results. If {z*} is a local coordinate sys-
tem on M, the corresponding coordinates in TM of a point Xe TM are the coordinates z* of
the base point z = 7(X) together with the components X of X with respect to {z*}. The map
@: TM — E will thus be a function of the variables (z%, X*), and since 7o @ = 7, its value at
(z%, X*) will be a tensor of type (r,s) on M at z. For the moment we shall suppress the tensor
indices on @. The fields 4 and B of (2.9) will be similar functions, their values being vectors at z.
Since V4, 5@ is linear in 4 and B, we can define two covariant derivative operators V,, and

V.2 by putting
" Vi, p@ = AWV, @+ BV, D. (2.10)
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Then V,,® and V,, @ will be tensor fields on 7'M over 7 of type (, s+ 1), so that both operators
raise the covariant degree of the field by one, as does the usual covariant derivative V,.

In the notation of (2.8), let (z*(¢), X*(¢)) be the coordinates of I'(t) e TM. Then the coordi-
nates of y(t) € M are z2(¢). But from (2.4) and (2.9) we have

Aol'=1,0l" =v', Bol'=DoX,o0y =V,X. (2.11)
On expressing these in component form, we thus get
dz* dx? dz~
A 22 o AT XY 1
4 T B I +173, th. (2.12)

To write out (2.8) in component form, let us take 7 = s = 1, so that @ has index form @?* . Then
(2.8) gives

V(A, B)(p/.\p = d¢/\/t/dt+PI?VAk @V/\ - F:,u Ax ds/\v (213)
But on using (2.12) we have
d A . Ak 0 A (] 0 A I3 0 A
c—l;t@"‘—A E_)z_k‘d)'/"—r’f”X EY;Q”}-I-B 6—)7'?@'”' (2.14)
On putting this into (2.13) and comparing the result with (2.10), we then find that
0 0 )
Ve @, = é—zK@f‘ﬂ — 1, XVaXpdi’}ﬂ—k re,—r:o, (2.15)
d Vi @, = 0 ! 2.16
an ke Top T a_ﬁ A ( . )

We see that V., @*, differs from the ordinary form of a covariant derivative only by the presence
of the extra X-derivative term. Clearly this will also be so for arbitrary » and s. As a simple but
important illustration of (2.15), we note that

V, X" = 0. (2.17)

Our next development involves integrating over the tangent spaces 7,(M). Let # be the volume
element on 7, (M ). In integration theory, this is an m~form on the 2m-dimensional manifold 7'M,
but one can equally well consider it to be the usual coordinate expression

DX: = ||g(2)|dX" ... dXm. (2.18)

We shall write % if using other invariant notation, and DX if using coordinate expressions.
Then if @ has compact support on 7'M, we may define a tensor field ¢: M - E by

d(2): = fT " Dy. (2.19)

To state our main result concerning such integrals, we first define the horizontal lift 4 of a vector
field 4 on M. This is the unique horizontal vector field on TM satisfying 7,04" = Ao7. In
the representation (2.9) of vector fields on T'M, A* corresponds to (4 o7, 0). We now prove that

Vaid(z) = | Vady, ie V.p(z)= f V.. ®DX, (2.20)

T, T,

the second form being the corresponding local coordinate expression.
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Let y be an orbit of 4, and let 8, : T (M) — T,)(M) be the isomorphism induced by parallel
displacement of the fibres of 7 along y. For each X e T, (M), let fX be the curve in TM defined
by (fX); = f;X. This will be an orbit of 4*, and hence will satisfy

(BX)" = Ao (BX). (2.21)
Now from (2.19) we have

oy(t) = Do f, (2.22)

Ty(0)

since f, is an isometry, and hence on differentiating with respect to ¢ using (2.21), we get

de0Y' () =f D040 By =f Dy 0 AMy. (2.23)
Ty(0) Tyt)
But v’ = Aoy. Hence, since v is an arbitrary orbit of 4, (2.23) implies
pe0d(z) =| DyoAMy (2.24)
T,

for all z. Equation (2.20) then follows, as required, on applying Dy, to both sides and using (2.7)
and (2.4).

Still considering @ to be of compact support, we define the Fourier transform @ of @ by taking
the ordinary Fourier transform separately on each tangent space. Thus if ke 7, (M), we define

Bk): = f , P(X)exp (ik. X) DX, (2.25)

where k. X: = g, () kXA We shall also write @ as F®. Clearly, & is also a tensor field on TM
over 7 of the same type as @, A slight modification of the above proof shows that

VuF® =FV 2 ®, ie. V,F®=FV, 0, (2.26)
We also have, from (2.16) and (2.25), that
FV @ = —ik, FO, F(X,®) = —iV,,F® (2.27)

as for ordinary Fourier transforms.

3. THE CORRESPONDENCE BETWEEN BITENSORS AND
TENSOR FIELDS OVER T

In the preceding section we developed some properties of tensors on TM over 7. We shall
now relate these to a more familiar type of induced tensor field. Let p, and p, be the natural pro-
jections of the product manifold A x M onto its first and second elements respectively. Then a
tensor field on M x M over p, (resp. p,) is just a field of two-point tensors, or bitensors, on M
with scalar character at its second (resp. first) argument point. By using the exponential map
Exp: TM — M of the Riemannian connexion on M, we shall develop one-to-one correspon-
dences between tensor fields over 7 and those over p, and p,.

We may consider M as a submanifold of 7M by identifying each point ze A with the zero
vector of T,(M). It is then well known that there exists a neighbourhood N of M in TM such
that the map 8: N - M x M given by

3(X) = (r(X), Exp X) (3.1)
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is a diffeomorphism of N onto its image. A proof may be found in Kobayashi & Nomizu (1963,
ch. ITI, §8) and other standard texts. As p, 08 = 7, if @ is a tensor field on M x M over p, then

@:=dod (3.2)

is a tensor field on N over 7. Since ¢ is a diffeomorphism, if we restrict @ to 8(N) = M x M then
this correspondence between @ and & is one-to-one.

The covariant derivative of @ is, by (2.7), defined with respect to a vector field on M x M.
But if (z,x) € M x M, there is a natural isomorphism ¢, ,,(M x M) ~ T,(M) ®@T,(M). If, under
this, @ — (4, B), we shall write V,® as V(5 ®. Note that 4 and B will, in general, be vectors at
different points of M, in contrast to the case for Vi, 5 @(X) defined in §2, and that there is no
need to explicitly state the field point (z, x) as it is determined by 4 and B. If 4 and B are both
vector fields on M, then V, 5@ is a tensor field on M x M over p,. In local coordinates, we shall

wrte Vi, Bz, %) = 45(2) V, B+ B+(x)V &, (3.3)

indices on @ being suppressed. Here, and throughout, we are using the convention that a, 4, ...
will denote tensor indices at x and «, A, ... similarly at z. This provides a sufficient distinction
between the derivatives of @ at the two points that no further distinction, such as was needed in
(2.10), is necessary.

We now wish to relate the covariant derivative of & to that of @. From (3.2) we have

D, = D, 00
If we use this in (2.7) and let Pe Ty (7'M), we immediately see that

Vp® = Vy,pb. (3.4)
Now let A=1,P, B=DP, C=Exp,P, (z,%)=0X). (3.5)

Then on using (3.1), we can express (3.4) as
Vi, p® = Vu,09. (3.6)
It remains only to express C in terms of 4 and B. For this we use local coordinate expressions,

with the conventions for bitensor notation given in appendix 1. The exponential map is related
to the world function biscalar o by

Exp, X =x if X*=—0%z,x). (3.7)

We apply (3.6) with £ = TM and @ being the identity map on 7M. From (3.1), (3.2) and
(8.7) we thus see that the corresponding @ is '

&% (z,x) = —0%(z, x). (3.8)

But Vi, @ = D®, P = B. On putting this into (3.6) and using (3.3) and (3.8), we can solve

for C* to give Ce = K* A+ H* B, (3.9)
-1 -1

where K*: =—o0%0", H:=—0%. (3.10)

These definitions agree with those given in I by (I, 3.9). On substituting (3.9) back into (3.6)
and using (3.3) and (2.10), we obtain the desired relations

Ve ® =V, &4+ K4V, b, V@ =H"V,, (3.11)

the indices on @ and @ being suppressed.

10 Vol. 277. A,
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76 W. G. DIXON

The correspondence between @ and & is fundamental to the development of the theory of
moments. It is frequently convenient not to distinguish between them notationally, as the
appropriate form is almost always clear from the context. We shall then write (3.11) with the
circumflexes omitted, as the types of derivative symbol used provide sufficient distinction be-
tween the two forms. We shall, however, preserve the distinction for the remainder of the present
section.

The correspondence @+ @ associates with @ a tensor field @ on §(N) = M x M over p,.
There is  second correspondence that we shall need, also generated by the exponential map,
which associates with @ a tensor field ¢ on §(N) over p,. Let ze M. Then since Exp, maps

N:=T,(M)nN

diffeomorphically onto its image in M, the results of § 2 show that its derivative can be extended
to give a bundle map (Exp,) , over Exp, of the corresponding tensor bundles of type (r,s). The
second of these bundles is just the portion of E = T3(M) over Exp N,, while the first is simply
represented using the canonical isomorphism

Ty(T(M)) = T,(M) @ (T3), (M). (3.12)
We then define ¢ at (z,x) : = 6(X) by
$(2,2): = (Exp,) 4 (X, P(X)) < E. (3.13)

This gives mo ¢(z,x) = Exp X = p,(z, x), so that ¢ is indeed a tensor field on M x M over p,,
asrequired.

Since (Exp,) 4 is a diffeomorphism, the corespondence between the fields ¢ and @ is one-to-one.
With an abuse of notation, we shall write

¢ =Exp,® on &(N), ®=Expid¢ on N. (3.14)

This cannot cause confusion as Exp, and Exp4 are not meaningful in the notation of §2, since
Exp: TM — M is not a diffeomorphism. We shall make much use of this correspondence, and
the convenience of a simple notation for it, reminiscent of the true definition (3.13), outweighs
the disadvantage of a slight notational inconsistency. The coordinate form of (3.13) is easily
seen, from (2.2), (3.7) and (3.10), to be

$%rp. (22) = Hioo (= 0j) o @y (X)), (3.15)
With the use of (3.2), this can also be expressed as a relation between the two bitensor fields ¢
and &, ey (2,2) = Heyooo (—03) . B0y _(2,2), (3.16)

showing that one can be obtained from the other by using suitable propagators to transfer the
tensor character from z to x or vice versa.

A simple interpretation can be given of the relationship between ¢ and @ in terms of normal
coordinates. Suppose we start with an arbitrary coordinate system {x*}, choose a fixed point z,
and then set up around z the (unique) normal coordinate system {x*} such that 0x*[0x* = %'
at z. Then if Xe T,(M), the components of @(X) in the original coordinate system are pre-
cisely equal to the components of ¢(z, x) in this normal coordinate system if x is the point whose
normal coordinates are the components of X. In the special case where ¢ is independent of z, @
gives a way of simultaneously describing ¢ in normal coordinate systems about every point of
the manifold.
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There is an important relation between the (¢, @) correspondence and Lie differentiation.
If X is a vector field on a manifold A,, we denote Lie differentiation with respect to X by Ly.
Then if 0: M, - M, is a diffeomorphism, we have

Now suppose that /4 and @ are respectively vector and tensor fields on TM over 7. By restricting
A and @ to T,(M), in view of (3.12) they become ordinary vector and tensor fields on this vector
space, so that L@ is similarly well defined on 7, (M). By letting z vary over M, we can thus con-
sider L,® as a tensor field on TM over 7. Now let ¢ = Exp,® and A = Exp, 4. Define L, ¢,
similarly to the above, as a tensor field on M x M over p, by considering separately each fixed
value of z. Then on applying (3.17) with ¢ = Exp,, we find that

Ly,p=Exp,L,® on ¢&(N). (3.18)

While this is a perfectly acceptable definition of L, ¢ when the bitensors A and ¢ are taken as
having scalar character at the same point z, it is not the only possible interpretation, and it is
perhaps not the most natural one. If v is a vector field on M and ¢ is any bitensor on M, possibly
with tensorial character at both argument points, then L,¢ is most naturally defined by letting
L, act separately at each point. For example,

Lv ¢“K = vf aﬂ ¢‘?K - ¢/.Zk'aﬁv“ + vt a/\ ¢D.LK + ¢O.L/\ aK 1)’\, (3 19)

where the first two terms on the right hand side come from considering z as fixed and differen-
tiating at x, while the last two terms fix ¥ and differentiate at z. If now v is replaced by a bitensor
field v*(y, x), with scalar character at y, then L, ¢ is most naturally considered as a three-point
tensor, with scalar character at y and defined for each fixed y as a bitensor as in (3.19). The
case when y and z coincide is then treated as a coincidence limit of this three-point tensor as
y — z. If ¢ has scalar character at z, we see that this agrees with the previous interpretation of

L, ¢ used in (3.17) provided
limA%(z,x) = 0 (3.20)

T—>2

identically. We shall adopt this latter interpretation for Lie derivatives involving bitensors, and
hence (3.20) must be added as an additional condition for the validity of (3.18).
In the notation of (3.18), a third meaningful Lie derivative is L, @, where

A% = A%(y, x), b = @(z, x).

Let us again take the limit ¥ — z. Since the result is a tensor field on 6 () over p,, we can associ-
ate with it a tensor field on N over 7 by (3.2). We shall denote this by L, @, so that

Ly,®: = (L,®)o8, (3.21)

thus giving meaning to L,, as well as Ly, acting on @. As a companion result to (3.18), we now
investigate under what conditions

L,Exp,® =Exp,L,® on &(N). (3.22)
From (3.16), we see that (3.22) will hold for all @ if

LH* =0 and L,o*, = 0. (3.23)

10-2
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78 W. G. DIXON
The first of these follows from the second by (3.10). So since we also have
Lyo*, =0,L, 0%, (3.24)
it follows that (3.22) will hold provided
L,o* = 2%0%, + Avo* ,— oV A< = 0. (3.25)

We can choose A# and V,A* arbitrarily as they are independent of x, and then solve (3.25) for
A%(z, x) for all x & z. On using (3.10), we obtain A* = £%, where

£4(z,x) 1 = K% A% + H* o B (3.26)

and 4%(z), B<*(z) are arbitrary tensor fields. For each fixed choice of z, this gives a 20-parameter
family of vector fields which was seen, in § 3 of I, to include all the Killing vectors of the manifold,
as is to be expected from the geometrical interpretation of (3.25). Note that unless A< = 0, £+
does not satisfy (3.20), so that neither one of (3.18) and (3.22) necessarily implies the other.

From (3.11), (3.21) and (3.26) we see that the coordinate expression for L, @ is given by

Ly®ky = ANy By A BX,V @y + B DIy 4o = B, —. (3.27)

Taken together with (2.26) and (2.27), this shows that L, commutes with Fourier transformation

provided
B(K/\) = O. (3.28)

4, GENERATING FUNCTIONS FOR THE REDUCED MOMENTS

Having considered the mathematical techniques that we shall need to handle tensor fields
on TM over 7, we now introduce the important fields of this type that play a central role in the
theory. These are the generating functions for the moments of 7%# and J*. We first give the sym-
metry and orthogonality properties that we shall require of the moments, without inquiring too
closely how they are to be related to the corresponding fields. From the moments we construct
the generating functions, and then we investigate the properties possessed by these functions in
virtue of the imposed conditions. Only after this shall we consider how to rclate the moments to
the fields. For the initial stages our guideline will be the results obtained in II for the simpler case
of J=.

We first choose a base line /. This is an arbitrary C* timelike world line which may be considered
as representing an observer, and it provides the (moving) origin to which the moments are re-
ferred. Additionally, we choose an arbitrary C*® field n* of timelike unit vectors along /, which is
to be the instantaneous four-velocity of the reference frame used in constructing the moments.
It may seem most natural to choose n* tangent to /, but for reasons discussed in I there are con-
siderable advantages to be gained by having »* arbitrary. We parametrize / as z(s), so that in-
dices k, A, ... are used for tensors along /, and x* is used as an arbitrary field point. It is also
convenient not to insist that s be the proper time along /, so that the velocity vector »*: = dz*/ds
is not necessarily a unit vector. Later, we shall see that the most natural condition on s is to take
nyv* = 1, but for the present we also leave s arbitrary.

First consider J*. In any set of moments of J* in the sense defined in II, the 27-pole moment

tensor ma - At (s) satisfies
mMe et = ma-2 e for n> 2. (4.1)
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To discuss general properties of tensor symmetries, we shall use the representation theory of the
symmetric group as expressed, for example, in Weyl (1946). We write [n,,n,,...,7n,], where
ny = ny = ... = n, to denote the irreducible symmetry described by the Young diagram of the
partition (y,n,, ...,n,). Then ifn > 1, (4.1) corresponds to the reducible symmetry

[2]®[1] = [n, 1] ®[n+1], (4.2)
where the parts with symmetries [z, 1] and [z + 1] may be taken as
mAre -1l and maee An (4.3)

respectively. It was shown in II that the appropriate additional conditions to impose to obtain
the reduced moments of J when (1.31) is satisfied are

mA-tam =0 for n>1 (4.4)

and mymitn-itail = 0 for n> 2. (4.5)
Condition (4.4) gives m- the irreducible symmetry [z, 1], while (4.5) gives

np e A (4.6)

the irreducible symmetry [r], i.e. makes it totally symmetric.
We now use this as a guide to suggest appropriate conditions for the moments of 7%/, In
any set of moments of 7%4, the 2"-pole moment tensor should satisfy

T dppy — I(/\l.../\n)(/u/) for n > 0. (4.7)

If n = 0, this is already irreducible, while if » = 1 it has the reducible symmetry

[1]®[2] =[2, 1]&[3]. (4.8)
But for the general case # > 2, it has the symmetry
[r]®[2] = [n, 2] ®[n+1,1]D[n+2]. (4.9)

Analogy with J# suggests that we require the [z + 2] part to vanish for # > 1, and the [n+ 1, 1]
part also to vanish when n > 2. This leaves the moments of all orders with irreducible symmetries,
namely [n, 2] for n > 2 and [2, 1] for n = 1, and is achieved by requiring

IO = 0, (4.10)

and I 2amv =0 for n> 2. (4.11)
Now it follows from (4.7) and (4.11) that

Piadam) =0 if n > 2. (4.12)

Hence W BT (4.13)

for n > 2, has the reducible symmetry [n—1,2]®[n, 1], as (4.12) gives the vanishing of the
[7+ 1] part which it would also have had if only (4.7) were satisfied. Again by analogy with the
case for J#, we impose the vanishing of the [z — 1, 2] part of (4.13) by requiring

n/\ll"l""\n—Z["ﬂ“l[Anﬂ]V] = 0 for n > 3, (4.14)

leaving (4.13) with the irreducible symmetry [#, 1]. No orthogonality condition is imposed on
I, as ny I*# is already irreducible.
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80 W. G. DIXON

The plausibility of these conditions is increased by the fact that for a flat spacetime in which
we choose #* = 94, they are satisfied by the reduced moments obtained by Dixon (1967) by
performing the reduction process explicitly. Their real justification, however, is simply that we
shall see that they work. For the moment they are just a hypothesis that we shall investigate.

The corresponding moment generating functions are tensor fields on 7'M over 7, although
they are defined only on the portion of 7'M over the base line /. They are defined by

N © (_i)n
(s k): = 3 Sk Lk meead(s) (4.15)
n=0 1! n
and (k)= 3 (_n:)nkkl...kKnI“1~-“nM(s) (4.16)
n=0 !

so that J*# is symmetric. The conditions (4.1) and (4.7) are then precisely those necessary for
the generating functions to uniquely determine the moments. The additional condition (4.4) is

equivalent to
k/\ﬁ;l/l = k/\m/\, (4:.17)
while (4.11) is similarly equivalent to

kI =k, I —ik ey I<2n, (4.18)

leaving (4.10) as the only remaining symmetry condition needing separate consideration.
To express the orthogonality conditions (4.5) and (4.14) in terms of the generating functions,
it is convenient to refer the tensors to an orthonormal tetrad system e(s) defined along [ in
K

which e*(s) = n*(s). Equalities holding only with this spécial choice of basis will be denoted by =.
. .

It is then easily seen that (4.5) and (4.14) are respectively equivalent to Vi, and Ay )

being independent of £°. We are here using the notation (2.16) and writing V., : = V., Vi,
for repeated derivatives.

We now use this to investigate the k°-dependence of #* and I** themselves, starting first
with 7*. On multiplying (4.4) by n, n,, and using (4.1) and (4.5), we obtain

my My mirtnt =0 for n > 2, (4.19)
and hence from (4.15) that (s, k) £ A(s, k) + kOB (s, k), (4.20)

where k: = (k', k%, k%), for suitable functions 4% and B2 independent of k% The requirement that
Vi, be independent of £° is then equivalent to

Vi By =0, (4.21)

and thus to the existence of a scalar function B(s, k) such that
B,=V,,B. (4.22)
But from (4.17) and (4.20) we see that B, Z 0. Hence by (4.22), B is independent of A°, so that
iy (s, k) = A, (s, k) +k°V 4 B(s, k), (4.23)

a result derived in IT by a different method.
To obtain the analogous result for » we first deduce from (4.14) and the symmetry con-

ditions that
m M It =0 if n > 3, (4.24)
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and hence from (4.16) that J#* can be expressed in the form
Io(s, k) & Awv(s, k) + KOB# (s, k) + (k)2 Cv (s, k). (4.25)
The independence of V., 7 1, from £9 is equivalent to
VatarCuay1 = 0 (4.26)

%
and Vitia B+ 200 Vin C 1+ 200 Vi € o = 0, (4.27)

vip

while (4.26) itselfis equivalent to the existence of a C, such that
C/w = V*(/t CV)' (4.28)

Since C,, is independent of £°, by first considering u, v = 1,2,3, we can solve (4.28) for a
C, (v = 1, 2, 3) which is independent of £°. Now it follows from (4.18) and (4.25) that C,, = 0.
Together with (4.28), this shows that we can then choose C;, = 0.

Letus put

D,, = Vu,Cp. (4.29)

Then D,, = 0 also, and (4.27) can be written as
Vatir Buan+ 0% Vuu Dy, + 03 Vi Doy 0. (4.30)
On putting # = 0 in this, we get V. (Vi B,jo—D,,) Zo. (4.31)
Now the (£°)*terms in (4.18) give B, +k*C,, = —1ily,, (4.32)
from which Vi Boo+ 364V, D,, = 0. (4.33)

Since D,, = 0, and since the integration of (4.28) for C, leaves an arbitrary constant in D,
which is restricted only by D,, = 0, we see from (4.31) and (4.33) that we may choose C, in
4,
(4.28) so that K4V, Dy, +2D,, = 0. (4.34)
Consider this along the ray £* = ua? through the origin in 7 (M), where @ is constant and
is a parameter. It gives u*D,, constant along the ray, and since D,, is not singular at the origin,
we must have D,, = 0. Hence from (4.29) there exists a scalar C(s, k) such that

C/\ — V*AC. (4.35)

Since €, = 0, Cis also independent of £°. The last two terms on the left hand side of (4.30) now
vanish, so that there exists a B, such that

B,, = VB, (4.36)

We again consider first only p, v = 1, 2, 3, and so solve for a B,(v = 1, 2, 3) which isindependent
of £%. In this case we have from (4.32), (4.28) and (4.35) that

By, =V (C— k¥, C —ilyg, k¥). (4.37)

We can thus choose By = 2(C—ktVy, C—ily, k"), (4.38)
which is also independent of £° by (4.10). We thus finally obtain 7#* in the form

i/w(s! k) 2 A/w+kov*(,u BV)+ (ko)zv*yvcﬁ (439)

where 4,,, B, and C are all independent of £°.

s
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5. GENERATING FUNCTIONALS

The next step is to associate a distribution (generalized function) with each of the two genera-
ting functions. These will be functionals defined on a space of C* tensorial test functions on 7M
over 7, of the appropriate type and having compact support. For conciseness, we shall in future
take ‘test’ to imply ‘of class C* and compact support’. Then if £, and E,, = E,, are such test
functions, and their Fourier transforms £, and £, . are defined as in (2.25), we put

m[E]: = (2m)~4 [ ds [#r(s, k) E\(2(s), k) Dk (
and IE,,]: = (2n)*4fdsfi"/‘(s, k) E, ,(z(s), k) Dk. (

(<14

1)
2)

o

To ensure the absolute convergence of these k-space integrations, we assume that for fixed s,
A (s, k) and I*#(s, k) diverge as k — oo no faster than a polynomial in £. It was shown in §3 of 11
that these functionals then uniquely determine the corresponding generating functions.

On using (2.27), we can express (4.17) and (4.18) as relations on these functionals. If 2 and
£, are respectively a scalar and vector test function on 7'M over 7, and we take

E/\ = V*/\Q> E/\/t = V*(/\Q,u) (53)
in (5.1) and (5.2), we obtain  m[E,] = [dsm’(s) E(2(s), 0) (5.4)
and I[E,,] = [ ds[I*(s) E) (2, 0) + %V . E) (2, 0)]. (5.5)

The validity of these for all 2 and 2, is precisely equivalentto (4.17) and (4.18).

The relations (4.23) and (4.39) also have their consequences for the functionals. Consider
the k-space integral in (5.1) for a fixed value of 5. Then it was shown in § 5 of IT that (4.23) limits
the dependence of this integral on £, (z, X) to the value of

E, and V,,(XE)) onthesurface n,(s)X*=0. (5.6)

The same method shows that (4.39) similarly limits the dependence of the corresponding
integral in (5.2) to the value of

E,, Ve XE,) and Vi, (X<X'E,) on mX'=0. (5.7)

Let 2(s) denote the hyperplane n,(s) X* = 0 in Ty, (M), and put 2: = U,2(s) = TM.
Then (5.6) and (5.7) show that the support S of either of these functionals lies in 5. We now make
two further assumptions. The first is that § also lies in the domain N of 7M on which 8, defined by
(8.1), is a diffcomorphism. Then $(s) : = Exp (§'n z (s)) is a portion of the hypersurface formed by
all geodesics through z(s) orthogonal to n1(s). The second assumption we make is that the hyper-
surfaces S(s) = M are all disjoint. Then Exp maps § diffeomorphically onto its image

S:=U,8(s) in M,
which will be a world tube containing the base line /.

We can now begin to see the link between the moments and the tensor fields J* and 7% which
they are to represent. These too have equivalent functionals, namely

Po > (I oyt = [Fed,dix (5.8)
and ¢zx/9 - <Taﬂ, ¢aﬂ>: = Jvzaﬂqsaﬁ d4x’ (5'9)
where Qo= Juf(—g), T#:=T[(-g), v (5.10)
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and ¢, and ¢,; = ¢, are tensorial test functions on M. The conservation equations (1.31) and
(1.32) can then be expressed as

T 5,11

(T, N gy = (T Fgo P,

for all scalar and vector test functions ¢ and ¢, respectively. These are reminiscent of (5.4) and
(5.5) in so far as both are special cases applicable when the test functions are derivatives of the
appropriate type. The moments will ultimately be defined by expressing the functionals (5.8)
and (5.9) in terms of m and 7 in such a way that verifying the relations (5.11) involves evaluating
m and I only for the special cases (5.4) and (5.5). In this way the conservation laws will lead to
restrictions only on m?, I*# and 1“2, These will give the equation of conservation of total charge
and the required equations of motion for the momentum and angular momentum.

To this end we need to relate the £, and E, , of (5.1) and (5.2) to ordinary tensor fields on M,
but we note that this need only be done in the neighbourhood of § « TM. It is necessary to
consider the immediate neighbourhood of S, rather than just § itself, as (5.6) and (5.7) show
that we also need certain derivatives of E, and E,, on 8. Now since § = N, we already have
found in §3 a method of associating bitensors with E, and E, , around S; we can put

e, = Exp E, and e, = Exp E,, (5.12)

in accordance with (3.13) and (3.14). It is not yet clear what to do about the z-dependence of
these fields, which have scalar character at z, but itis clearly a step in the right direction. We shall
deal later with this problem of the z-dependence; for the moment we shall investigate properties
of mand Iif we consider them as functionals of ¢, and ¢, instead of as functionals of £, and E,,.
Before proceeding, we should note a possible ambiguity. An obvious alternative to (5.12) is to
take
¢*: = Exp ,E*, e¢*#: = Exp, E. (5.13)

We see from (3.15) that (5.12) and (5.13) are not equivalent, and it is not yet clear which is the
best definition to adopt. In order to leave our options open, so as to make the best choice in the
light of subsequent developments, we shall for the time being make a more general assumption.
Let us put ¥ = Exp X and take

ea(s3 x): = le.\aE/\(z(S%X) }
and eaﬁ<5’ x): = Z2/}az2/.‘ﬂE/\,u(z(s))X)a
leaving the bitensors Z; and Z, unspecified. From this and (3.15), we see that (5.12) and (5.13)

correspond to taking the appropriate Z as — o, and H;* respectively. We shall need to suppose
that both bitensors satisfy

(5.14)

Z2,0%(z,x) = —0o(z,x). (5.15)

This is satisfied by both these choices, and also by the parallel propagator gA,, which is another
reasonable candidate for Z*,. From (5.14), (5.15), (3.7) and (3.11), we see that the dependence
expressed in (5.6) and (5.7) for some fixed s now becomes one on the values of

s Vo(0Pey), enp V,(0Pe,), V,(0%0fe,;) for xeS(s). (5.16)

As with the notation Exp 4, and Exp+, it is convenient to have a concise notation for relations
such as (5.14). If P2, is a tensor field on 7'M over 7, and if a bitensor p*-, satisfies

P“ﬂ(z’ x) = Zl}‘“ see Zlﬂﬂ cee PA“./J. (Z, X)

e
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in some region R < ¢(XN), we shall write
p=2Z,(P) in R, P=2p) in &YR).

In (5.14), the bitensors ¢, and e,; are only defined when their first argument point zel.
They are thus more properly regarded as fields on ! x A rather than on M x M. This distinction
is of little significance, but we shall later need to discuss functions defined in ‘a neighbourhood of
8(8)’. Since 8(8) < Ix M = M x M, and the open sets of [ x M are not open in M x M, these
neighbourhoods will differ accordingly as 8(S) is considered as a surface in I x M or in M x M.
We shall generally leave this to be deduced from the context, to save a further addition to the
notation. It is also convenient to consider S(s) both as a surface in M and as the surface

{(z(s),%); xeS(s)} of IxM,

so that we can unambiguously refer to ¢, on §(s) without having to additionally specify that
the first argument of ¢, is also s. With these conventions, § = U,S(s) qua subsets of M, while
8(8) = U,S(s) qua subsets of [ x M.

We can now make a connexion with ordinary tensor fields on M. Since the hypersurfaces
S(s) are disjoint, there is a well defined C* scalar function 7(x) on S given by

7(x) =s if xeS(s). (5.17)

Then the values of ¢, and ¢,5 0n & (S) are determined by the C* tensor fields

Pa(x) 1 = ,(7(x), %), Pap(x): = e,p(7(x), %) (5.18)
onS < M.

A knowledge of these tensor fields alone is in general not sufficient to determine m[E,] and
I[E,,], because of the occurrence of the derivative terms in (5.16). However, there are special
classes of fields £, and £, for which this is enough. The simplest of these is if

o%,=0 and ofe,, =0 (5.19)
in the neighbourhood of &(S), which makes the derivative terms in (5.16) all vanish. This is
assured from the definitions of ¢, and ¢, if

X'E, =0 and X‘E,, =0 (5.20)
identically. For such E, and £, ,, m[E,] and I[E, ] can thus be considered as functionals of the
tensor fields ¢, and ¢,,. This is clearly another step towards relating m and / to the functionals
(5.8) and (5.9), but since the class of allowed fields £, and £, , is being restricted, we need to
investigate to what extent are the moments determined by m and I when they are restricted to such
fields. Now it was shown in § 6 of I1 that X*E, = 0 if and only if £, has the form

Ey=XrH,, H, =H,,,, (5.21)
for a suitable tensorial test function #,, on 7'M over 1. The same method shows that X*E, , = 0
if and only if E, , has the similar form

E =X XH , Houw=Huan Hayw = 0. (5.22)
These tensors A have the irreducible symmetries [1, 1] and [2, 2] respectively.
From these forms we see that
E,=0, E,=0, Vy£E, =0 when Xr=0, (5.23)
Now the contributions to m[E,] from m?, and to I[£},,] from [** and I**#, are given by the right
hand sides of (5.4) and (5.5) for any E, and E, . From (5.23) we thus see that these contributions
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vanish when (5.20) is satisfied, and hence the restricted forms of m and I discussed above can
give no information about these low-order moments. They do, however, enable all the higher
moments to be determined completely. To see this, we take the Fourier transforms of (5.21)
and (5.22) to give

BN = iV, Hi, B = ¥, Heab, (5.24)

On putting these into (5.1) and (5.2) we obtain
m[Ey] = (2m)~%i [ ds [ V gy,  H Dk (5.25)
and I[E,,] = — (2r)~4 [ ds [ V yqq, L n B DE. (5.26)
Let Quuls, k) = iV, and T (5 8) = = Vg da (5.27)

These have exactly the same symmetries as the H’s of (5.21) and (5.22). Since the H’s are tensorial
test functions which are arbitrary apart from their symmetry requirements, we thus see from
(5.25) and (5.26) that Q, ,and J,, v are completely determined by these functionals of the H’s
From (4.15) and (4.16), we obtain

~ ':01 (_i)n . ke
Q/\/L = e n! Kra... anl...Kn/\,u (5'28)

Ty = 5 0 e
and uvp = n§0 - 3 nJK1 ko Ap3 (5.29)
where le...K,,,/\/L: = My okglapd (530)
and J/q...kn/\/wp: = IKI...Kn[/\[V/L]p] (5'31)

for n > 0. As a consequence of (4.1), (4.4), (4.7), and (4.11), the @’s and J’s satisfy

Quyooknrn = Quyng  for n> 0,} (5.32)
Quy.okyrligry = 0 for n > 1,
and Seroinrunn = Sy Mptvp) for n>0, } (5.33)
Seporgipwpr =0 for n>0, Jo o oau,=0 for n>1,
and on using these, we can invert (5.30) and (5.31) to give
mr-tnt = [2nf(n+1)] QPu-r for n > 1, (5.34)
and Pty = [4(n—1)[(n+1)] JQtnaleld)y - for  p > 2, (5.35)
Since Q auand Jy,,, determine all the Qs and J-’s, we thus see that they determine completely

the m’s and I’s given in (5.34) and (5.35) as required.

The conditions (5.32) and (5.33) are the symmetries corresponding to [z+ 1, 1] and [z + 2, 2]
if the symmetrizations of the corresponding Young diagram are performed before the antisym-
metrizations. If the antisymmetrizations are performed first, we obtain the properties of the m’s
and I’s. The @’s and J’s form an alternative description of the higher moments (i.e. other than
mA, IA#, I¥*+) which for some purposes is more convenient than that given by the m’s and I’s. We
see, for example, that the orthogonality conditions (4.5) and (4.14) take the simple forms

nKlQKl...Kn/\ﬂ =0, nKIJKI.. =0 if »n>1. (536)

 Kp Apvp

We shall use, from now on, whichever is most convenient in a given context.
11-2
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Let us now summarize the main results of this section so far. By studying the functionals (5.1)
and (5.2), we have seen that two special types of test function have particular significance:

(i) Ifm and I are restricted to act on functions of the form (5.3), then in virtue of the sym-
metry properties of the moments, these functionals take values depending only on the moments
m?, I** and I<*#, These particular moments are conversely determined by these restricted func-
tionals.

(i) If m and I are restricted to act on functions of the forms (5.21) and (5.22) respectively,
they take values independent of the moments mentioned in (i), but they determine all the re-
maining moments. In virtue of the orthogonality properties of the moments, these restricted
functionals may be considered as functionals of the ordinary tensor fields ¢,(x) and ¢,,(x) on
M defined as in (5.18). Moreover, in this case the integrands of the s-integrals in (5.1) and (5.2)
depend, for fixed s, only on the restrictions of ¢, and ¢, to the hypersurface S(s) defined in the
paragraph following equation (5.7).

There is a third special case which is also of importance. In selecting (5.19), we made the
derivative contributions to (5.16) vanish. If this is not to be so, but we still wish to have m and
determined by the tensor fields ¢, and ¢, of (5.18), then these derivatives must be determined
by ¢, and ¢,,. Now differentiation of (5.18) yields

V.ds = V,e5+ (0egf0s) 0, 7. (5.37)
On using this and similar relations for ¢4, we may deduce from (5.1), (5.2) and (5.16) that
m[E,] dependson e, and 0%2,/0s on &(S),
I[E,,] dependson e, 0#0¢,,/0s and o*0#V ,(de,,[0s) on 6(§)} (5:38)
So m and I are determined by ¢, and @, if
0*0¢,[05 = 0, 0Fe,g[0s = 0, 0*0PV,(e,,0s) =0 on &(S). (5.39)

"This has the advantage over case (ii) above in that, given any ¢, and ¢, an ¢, and €45 Ccan be
found satisfying (5.18) and (5.39) merely by requiring (5.18) on ¢(S) and putting de,/0s = 0
and Oe,4/0s = 0 in the neighbourhood of &(S). In contrast, case (ii) above needs o*¢, = 0 and
%P ,p = Oon 8(3).

The price we pay for this advantage is that the s-integrands in (5.1) and (5.2) no longer de-
pend on the restrictions of ¢, and @, to a particular §(s). The complications caused by this are
well illustrated by the treatment of J*in II, and they are considerably greater for 7. Guided by
the work of §5 of II, we now find a correspondence between fields ¢, and ¢, satisfying (5.39),
and those satisfying (5.19).

6. THE AUXILIARY FUNCTIONS ® AND ),

With a view towards later substitution into the functionals (5.8) and (5.9), which satisfy the
relations (5.11), we shall consider correspondences of the form

€y —>Col = €, + 0,0, (6.1)
Cap => Cap’ = €opt Vi, 0p, (6.2)

where all the fields have scalar character at z(s) as well as the tensor character at x indicated by
their indices. Due to this s-dependence, we cannot directly apply (5.11) to the contributions from
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w and w,, but this will not cause difficulty as we shall use relations of the form (5.37). Our im-
mediate aim is to obtain correspondences (6.1) and (6.2) in which all the fields have compact
support, and which satisfy

ore, =0 (6.3)
and 0%, =0 (6.4)
identically, and 0%0c,[0s= 0 (6.5)
and 00 ,p[0s, 0PV (0, p/0s) = O (6.6)

for each s and all x in some neighbourhood of §(s). These are the two types of special case con-
sidered in the previous section, as given by (5.19) and (5.39). We shall need to work in both
directions, i.e. given ¢, and ¢,g, find all possible ¢, and ¢4, and vice versa, but when ¢, and ¢4
are given, we shall feel free to alter them outside of some neighbourhood of §(s) to ensure that an
appropriate ¢, or ¢,, of compact support does exist. In view of our results on the support of the
functionals m and I, we do not expect this indeterminancy to cause any difficulties later on.

Consider first (6.1). Initially, let ¢,(s, ¥) be given, with compact support but not necessarily
satisfying (6.3). To find ¢, satisfying (6.5), substitute from (6.1) into (6.5) to give

0%0,(0w[0s) = — 0*0e,,[Os (6.7)

in some neighbourhood of S(s). If x(«) is any geodesic through z(s), with x(0) = z(s) and « as an
affine parameter, then (6.7) is equivalent to

d (0w . O

CE(—a_s) = — X é—se“’ (6.8)
where %*: = dx*/du, holding along all such geodesics in the required neighbourhood. This
can be integrated for arbitrary initial values of dw/0s at # = 0, i.e. at ¥ = z(s). Having thus ob-

tained Ow/0s in a neighbourhood of §(s), we can obtain w by integrating with respect to s using,
for each x, an arbitrary initial value at s = 7(x). This shows that we can specify

[00[05],rp = a(s), @(7(#),%) = v(x) (6.9)

subject only to a(s) and v(x) being C® and of compact support. Since ¢,, is required to satisfy (6.5)
only in a neighbourhood of §(s), we simply choose w(s, x) to be any biscalar of compact support
which agrees with this construction in this neighbourhood, and then take (6.1) as defining the
corresponding ¢,.

When (6.3) is satisfied, it gives by differentiation with respect to s that

0%0e,[0s = —vio%, ¢, (6.10)
where v»*: = dz*/ds. In this case, (6.8) becomes

d (0w

e =y~ pr .

du(as) utvioye,. (6.11)
The singularity on the right hand side at # = 0 is here only apparent, since (6.3) implies that

e/\(s’ 2(5)) =0, <6'12)
and hence ¢, (s, x(«)) = O(u) as u — 0.
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Now, conversely, suppose that ¢,(s, x) is given. Again, we do not initially assume that (6.5)
is satisfied. To find an ¢, satisfying (6.3), substitute from (6.1) into (6.3) to give

do/du = 3%, (6.13)

along the geodesic segments x(x) as above. This may be integrated throughout a neighbourhood
of §(s), with an arbitrary initial value at # = 0, say

w(s, z(s)) = A(s). (6.14)

The corresponding e, given by (6.1), will then satisfy (6.3) in this neighbourhood. Now extend
¢, and o outside this neighbourhood in an arbitrary manner, subject only to (6.3), so that they
have compact support, and use (6.1) now to define a new ¢,. In accordance with our comments
above, this ¢, will agree with the original one in some neighbourhood of §(s), for each s.

If we start with an arbitrary ¢, satisfying (6.3) and construct ¢, using the initial values (6.9),
then we may recover w from ¢, using (6.13) provided that we take the initial value (6.14) to
be compatible with (6.9). This requires taking

A(s) = v(z(s)). (6.15)

Conversely, if we start from a ¢, satisfying (6.5) and find ¢, using the initial value (6.14), then to
recover w from ¢, we must use the appropriate values of v(x) and a(s). These are not determined by
¢, and A(s) alone, but are determined if we additionally know

Pal¥) + = ¢u(7(x), ), (6.16)
which is the function introduced in equation (5.18). For then (6.13) and (6.9) give
dv/du = 2*¢,, (6.17)

for those geodesics x(«) in S(s), which when integrated with the initial condition (6.15), deter-
mines v on each §(s), and hence throughout §. To find «(s), we then use (6.12), (6.1) and (6.16)
to give 0, » = ¢, at x = z(s), and hence with (6.9) and (6.14) we get

a = dd4/ds —v*¢,. (6.18)

Given ¢, satisfying (6.5), another choice for ¢, which yields the same ¢, (x) is &, (s, %) : = ¢, (x).
Equation (6.5) is trivial in this case, as ¢, isindependent of s. Since ¢, 4 and ¢ , together determine
¢, in the neighbourhood of §(s), it follows that ¢, must change if we alter ¢, while keeping 4 and
¢, fixed. Hence if we construct ¢, and ¢, using the same value of 4 as before, then ¢, + ¢,. It
will be important for us to know that nevertheless

e,(s,%) = é,(s,x) torall xeS(s). (6.19)
Clearly (6.17) shows that » = v, and hence that
w=06 on §(s), (6.20)

but from (6.1) we see that (6.19) requires that also 9,(w —®) = 0 on §(s). We now prove that
this is so. We first note that the techniques used in the proof of (5.38) show that, because of (6.20),
0,0 and 0,6 will agree on §(s) if and only if 0w/0s and 0&/0s agree there. Let us put @ = w —a,
and similarly define ¥(x), a(s), ¢, and é,. Then from (6.1) and (6.9) we have, on S(s),

oy = €y+0,7— (0®[0s) 0,7. (6.21)

But we have seen that 7(x) = 0, and from the definition of ¢, we have that ¢, (s, x) = 0for xeS(s).
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Hence (6.21) gives
¢, = (0B[0s) 0,7 on S(s). (6.22)

Since (6.12) implies that é,(s, z(s)) = 0, (6.22) then shows that
06[0s = 0 when x = z(s), (6.23)
i.e. a(s) = 0. Now on substituting (6.22) into (6.11), we sce that
d, ow

. e = At
uduln 5, = V'R 0,7 (6.24)
along those geodesics x(z) in S(s). As the coincidence limit {o3*) = — 8% and v*9,7= 1, we see
that the right hand side of (6.24) is — 1+ O (). The general solution of (6.24) thus has the form
0w[0s = ku=texpf(u), (6.25)

where £ is an arbitrary constant and f(«) is differentiable in a neighbourhood of # = 0. The only
solution compatible with (6.23) is then when k£ = 0, and so 0@/0s = 0 on S(s), as required, which
completes the proof.

For given ¢,, we now separate out in the corresponding ¢, the dependence on »(x) and a(s).
From (6.16), (6.1) and (6.9) we see that

G, (%) = e,(s,x) +0,v — (0w[0s) O, T (6.26)
if x € S(s). But from (6.8) and (6.9) we see that
O0w/[0s = "Yr(s, x) +a(s) (6.27)
if "3 (s, x) is the solution for 0w/ds corresponding to a(s) = 0. If we now put
. Y(x) = "P(r(x), %), (6.28)
then (6.26) gives
Pa(x) = €,(7(x), %) +0o2(x) — (¥ (*) +a(7())) 0, (6.29)

asrequired.
We turn now to the corresponding treatment of (6.2). Consider first the conditions (6.6)
on ¢, By applying the operator 07(z(s), x) V, to the first of these, we find that it implies also

o*0fV ey, [0s = 0. (6.30)

Note for later use that since 07V, differentiates along geodesics through z(s), this implication
holds also if, as in (5.39),

0%0¢,4/0s = 0 (6.31)
is required to hold only on §(s), rather than in a neighbourhood of S(s) as is the case in (6.6).
On using (6.30), we can replace (6.6) by the equivalent pair of equations (6.31) and

0
(T“O'/?V{a—ég 67/9} = O, (6.32)

where the { } notation is defined in appendix 1.

The next step depends essentially on the fact that we are presently requiring (6.31) and (6.32)
to hold in the neighbourhood of S (s). For this enables us to apply V., itself to (6.31). We then easily
deduce that (6.31) actually implies (6.32). Equation (6.31) also implies that

0ce [0s =0 when x = z(s). (6.33)
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We now show conversely that (6.32), together with the initial value (6.33), implies (6.31), so
that the two conditions (6.31), and (6.32) with (6.33), are equivalent. To see this, let x(x) be a
geodesic through z(s) as in (6.8). On multiplying (6.32) by o” and using o7 = ux?, we get

d{, .0
EZ; (x“xﬁé;caﬂ) = 0. (634)
Because of the initial condition (6.33), this implies
0%0h 0,505 = 0 (6.35)

in a neighbourhood of §(s). From (6.32) and (6.35) we now get that along all geodesics x(u) as
above,

& 0 0
ua;(o*"é}cay) +o*(of ,— Af) 5;Cas = 0. (6.36)
On using (3.10), this can be put in the form
d 0
— o Hf — —
T (0' H"‘asc“ﬂ) 0, (6.37)

which can be integrated to give (6.31) as required, on again using (6.33) as initial condition.

For the moment, (6.32) with (6.33) will be the most useful form of the conditions on ¢,.
Using it, let us follow for (6.2) the development of (6.1) that starts with (6.7). So let ¢,4(s, x) be
given, with compact support but not necessarily satisfying (6.4). If we substitute from (6.2) into
(6.32) and let x*(u) be a geodesic as in (6.8), we obtain

8% (0 gy O iy 0
a‘z—l'é (‘a}wa) +Raﬂy§xﬂw7‘a‘;wa = —xﬂx’yV{ﬁ'a—;e“,},). (6.38)
By integration of this along all such geodesics in a neighbourhood of §(s), we obtain a dw,/0s
which ensures that (6.32) will be satisfied. As before, we can then find a corresponding v,
satisfying

Wo(T(x), %) = v,(x) (6.39)

for arbitrary v, of compact support. To specify uniquely a solution of (6.38), we need to give
0w,[0s and V4(0w,[ds) at u = 0. In part, these are determined by (6.33), which from (6.2) is

equivalent to

0 0

where, for example, V, w, should be taken as meaning 8§ lim V,, w,. Using this same convention,
T—>2

—>

we are thus free to specify

Soe=al) and Vs =ba(s) (6.41)

arbitrarily, subject only to compact support and &, = 0.

To separate out from Ow,[0s its dependence on «, and b,,, we observe that if the right hand
side of (6.38) were zero, it would be the equation of geodesic deviation. The results of §3 of I
then give the general solution of (6.38) as

w,[0s = Kyxa + H oMby + ", (6.42)
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where ", (s, x) is the solution for dw,[0s corresponding to a, = 0, b,, = 0. If
Pap(%) : = cop(7(x), %) (6.43)
asin (5.18), then from (6.39) and (6.2) we get, as the analogue of (6.26), that
¢oc/$’ = ea/i’ + V(avﬁ) - (aw(a/a‘y) aﬁ) 7, (644)

where s = 7(x). The dependence of ¢, on a, and b, , is obtained by substituting (6.42) into (6.44).
By analogy with (6.28), we also write

Ya(x): = "Pa(r(x), ). (6.45)
We now see what simplifications occur when ¢, satisfies (6.4). First, note that this implies
0°0#0e,p[0s = 0, 0PV, e,;, =0 and 070°V e,; = 0. (6.46)
By letting x — zin (6.4) and the first two of these, we can deduce (cf. (5.23)) that
ey, =0, 0e,[/0s=0, Ve, =0, (6.47)
in the notation of (6.40). Hence (6.40) and (6.41) reduce to
0w, [0s = a.(s), V. 0w,[0s = b,(s). (6.48)

We next show that when a, = 0, which is the case in the construction of iy, one integration of
(6.38) can be performed explicitly. Although this can be done directly, it is easier to derive the
first order equation separately, from the alternative condition(6.31)on ¢,. We first deduce from
(6.31), (6.2) and the first of equations (6.46) that

i(ﬂﬁwa) -0 (6.49)

along the usual geodesic segments x(u), with x(0) = z(s), in some neighbourhood of $(s). Since

a, = 0, this integrates to show that
0*0w,[0s = 0 (6.50)

in this neighbourhood. If we now substitute from (6.2) into (6.31) and use (6.50) and (6.4),
we find that

5 (0 0
ug (5}(1)“) —O‘“ﬂé}a}ﬁ = 21}"0’,1/"eaﬂ (6.51)

along such geodesic segments, which can be put in the form

% (u“l o"‘“%wa) = 2u%v, 0% e, . (6.52)
As with (6.11), the singularity on the right hand side is only apparent, as (6.47) shows that
e.5(5, %)) = O(u?) asu — 0. All solutions of (6.52) satisty dw,[/0s = 0 at u = 0; the boundary con-

dition at = 0 is the freedom to specify

d [0 "
d_u(é}w") = a'b,, by (6.48).

We next assume ¢, , given, although not necessarily satisfying (6.6), and we seek an w, such
that e, satisfies (6.4). The remarks following (6.14) concerning modifying ¢, are equally applic-
able in this case to ¢,,, and so we shall only concern ourselves with the corresponding equations.

12 Vol. 277. A.
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First note that (6.46) implies
o#o7V 4e,,, = O. (6.53)

On substituting from (6.2) into this, we get

820 [du? + R o5 #9700 = 857V 40 (6.54)

afy ay}
along the usual geodesic segments. On integrating this with arbitrary boundary conditions at
u = 0, we get an w, which ensures thate,;: = ¢, — V(, 0 satisfies (6.53). However, just as (6.32)
and (6.33) together imply (6.31), so also (6.53) implies (6.4) provided that ¢, = 0 at u = 0.

The allowed freedom in the initial conditions for (6.54) is thus that we can take
w, = A.(s), V.o,=c,+B,(s) at u=0, (6.55)

where 4, and B,, = By, are arbitrary.
If we start with an ¢, satisfying (6.4), consistency of the two sets of initial conditions for the
closed cycle from e, to ¢,, and thence back to ¢,, requires, from (6.55), (6.39) and (6.48) that

AK(S) = VK(Z(‘Y)) and BK«\ = V[KV/\]_a[/\aK] 7. (656)

The definition of 7 shows that 0,7 = n,/(n'v,), so that the last term in (6.56) is easily evaluated.
If, conversely, we start from ac 4 satisfying (6.6) and find ¢, using (6.55) as initial conditions, then
torecover ¢, frome,,, A, and B,,, weneed to be able to reconstruct a,, b,, and »,,. The correspond-
ing treatment of ¢,, following (6.16) suggests that to do this, we need also to know ¢, as given by
(6.43). However, it is not evident that even this suffices, as (6.54), which corresponds to (6.13),
involves V¢g,. Although ¢,; = ¢, on S(s) by definition, we will not generally have

VaCﬂy = Vac¢ﬂ’y on S(S).
We now show that, nevertheless, we do have
UﬂUyV{ﬂcuy) = O'ﬂo’YV{ﬂan,},} on S(S), (6.57)

and so we may replace ¢, by ¢, on the right hand side of (6.54) when the geodesic x(«) lies
in S(s). This may then be integrated on using (6.55) to give w, on S(s), and hence v, by (6.39).
To prove (6.57), let us put ¢, 4(s, ¥) = @,p(x) and ¢, = ¢,5—C, 4, as was done for ¢,. Then (6.43)
implies

Visla

n = =070, ,[0s on S(s), (6.58)

from which (6.57) follows on using (6.6).
We also need to express ¢, and b,, in terms of 4,, B, and ¢ 5. Using (6.43), (6.48) and (6.55),
we see, in the notation of (6.40), that :

ay = 84,[ds —v(d 2+ B,y) (6.59)

and b = 8B,,[ds —vrV 0y (6.60)

Together with (6.2), (6.47) and (6.55), (6.60) gives
b;c/\ = 6BK)(/dS—~U/‘(QV[KCM”'-FRKA”VAV). (66])

But similarly to the derivation of (6.57), using (6.33) we see that V¢
(6.61) finally becomes

au = Vi@, and hence

bk/\ = SBK/\/ds_vl‘(2V[K¢/\],u+RK/\;wAV)' (662)
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We shall also need to know that if ¢,, and é,4 are derived from ¢, and ¢, 5 using the same initial
conditions, then they agree on each §(s). In fact, we show that

Wy =By, V,0,=V,d;, and e,,=¢,, oneach S(s). (6.63)

We define ¢,, etc., as before. The first of the results (6.63) has already been proved. By it, we
see that the second is equivalent to
0w,[0s =0 on S(s), (6.64)

while by (6.2), the third follows from the second. It thus remains to prove (6.64). The method
is similar to that leading to (6.25). It follows from (6.44), since 7, = 0, that

éaﬂ=a(aréa}aﬂ) on S(s). (6.65)

As ¢, = 0 by (6.47), this shows that 0@, /0s = 0, so that by (6.48), a,(s) = 0. Hence (6.52) is
valid for the barred variables, and on $(s) it gives, with (6.65),

d 0 _ d_ .
a—&(u*l ak“a—sa)a) = 2y~ vla"‘“a"/fa(“Tawﬂ). (6.66)
We integrate this in two stages. If we first multiply it by v,, we get a differential equation in the
variable v,0%*0® ,/0s, which may be integrated as before to give a solution of the same form as

(6.25). This is compatible with @, = 0 only if
0,0%“0w,[0s =0 on S(s). (6.67)

On putting this back into the right hand side of (6.66), we can integrate the resulting equation to
give
%% 00,[0s = Cxexpf(u) on S(s), (6.68)
where C¥ is an arbitrary constant vector at z, and f(«) is differentiable in a neighbourhood of
u = 0. Again, this is compatible with @, = 0 only if C¥ = 0, from which (6.64) follows as required.
For later convenience we shall write

(’)a(‘y: x) = ga('f’ x) +’\a(5; x)’ (6'69)
where A, is the solution of (6.54) corresponding to 4, = 0, B,, = 0, and £, is the corresponding
solution of the homogeneous equation. As this is again the geodesic deviation equation, we have

§* = K2 A+ H%, o) B, (6.70)
asin (6.42).

7. THE REDUCED MOMENTS OF J%

We are now in a position to relate the generating functionals of §5 to the sources J* and 7%,
In doing so, we shall reverse the order of development used in II, by proving first the existence
and then the uniqueness of the reduced moments. This will be done by first making a provisional
definition of the moments, from which we deduce both their existence and the result which we
then adopt as a new and final definition. The existence of the moments given by the final de-
finition is thus assured, and their uniqueness is then proved.

In the present section we follow this procedure for J%, being guided by the expected final
results which are already known from II. This is to provide a model which we can then follow in
the subsequent sections in treating 7%/, Only in this way do we seem able to arrive at the best

12-2
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definition of the moments of 7%4, as it is not a straightforward generalization of that given in IT
for J=.

First, we note some weak geometrical restrictions that we shall need to impose. These were
discussed in I and II, and require, roughly, that the body be not too large, and be convex. The
convexity condition is not essential to the method, but it saves us from having to make minor
distinctions between the supports of various functionals, and so saves yet more complication in the
notation. Similarly, it is convenient to take J* and 7%/ as having the same support, ¥ say.

Assume that the intersection of W with an arbitrary spacelike hypersurface X' lies in some
convex neighbourhood in M whose closure is compact. Choose the base line / for the moments
so that its point of intersection with any such X' lies in such a convex neighbourhood. If X(s)
denotes the hypersurface formed by all geodesics through z(s) orthogonal to z(s), we further
suppose 7 chosen so that the cross-sections 2'(s) n W of W are spacelike and disjoint. Finally,
the ‘convexity condition’ we use is that the geodesic segment joining z(s) to any point of X'(s) n W
should lie entirely within this cross-section. These assumptions ensure the validity of the geo-
metrical constructions we shall make.

We also need, temporarily, an assumption connecting W with the support § of m[E,]. In
the notation of §5, S(s) < 2'(s). We suppose that also Z'(s) n W < S(s), so that W < §.

Let w*(s) be any C*® vector field on M such that w* ds drags 2'(s) into X(s+ds). Then if ¢,
is any vectorial test function on M, we have from (5.8) that

T4 b = f ds f L Fpwrdz, (7.1)

Now starting from ¢, (s, x) : = ¢,(x), follow through the constructions of § 6 with an arbitrarily
chosen A(s). This gives first w(s, #) and ¢,(s, x), and then a(s) and v(x) from (6.9) and ¢ (x) from
(6.27) and (6.28). On substituting from (6.29) into (7.1), and using (5.11) and the result

0,Twfdl,; = d,,

we now obtain (I B> = fdsf (e4(s, %) Yewh —pFF) d Xy ~faqu, (7.2)
(s)

where q(s): = Jrdd,. (7.8)
Z(s)

Note that although, in § 6, we reserved the right to alter ¢, (s, x) outside of the immediate neigh-

bourhood of §(s) when constructing w and ¢, this does not alter the corresponding ¢ ,(x) of (6.16)

within §. Since by hypothesis W < S, this thus does not affect the validity of (7.2).
From (6.28), (6.27) and (6.11), the function () satisfies

P(z(s)) = 0, dy[du = u~'v,0%,, (7.4)
the second of these holding along all geodesic segments x(x) lying in §(s) having x(0) = z(s)

and u as an affine parameter. The integral

J' (e, 8w — ) A, (7.5)
Z(s)

occurring in (7.2) thus depends on ¢,(s, x) only through its value on §(s). Now from (6.3) and
(5.16) we see that the functional

£, > (2m)= f (s, k) By (z(s), k) Dk (7.6)
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is well defined if, in the terminology of §5, E, = Z!(e,) in some neighbourhood of . It is con-
venient also to require £, to satisfy (5.20), which we may do as it is compatible with (6.3). More-
over, the functional (7.6) also depends on e,(s, ) only through its value on S(s). We now adopt,
as a provisional definition of the reduced moments of J#%, the hypothesis that (7.5) and (7.6)
are actually identical. Hence

fz(.g) (e, 3°wf —YJF) ALy = (2m) “{fﬁz"(&, k) E,(z(s), k) Dk (7.7)

for arbitrary E, satisfying (5.20), and any ¢,(s, x) satisfying (6.3) and given by Z,(£,) in some
neighbourhood of § (3.

This provides our first link between the support of J* and that of the functional 7. It is not a
complete link since E, in (7.7) is restricted by (5.20), but for such E), it shows that the right hand
side of (7.7) depends on the value taken by E, in precisely that region of 7,y (M) in which E,
must be known in order to determine ¢, and ¥ on X (s) n W. Now to determine ¢ at xe X'(s) n W,
by (7.4) we need to know ¢, along the whole geodesic segment joining z(s) to x. However, by
hypothesis this segment lies entirely in 2'(s) n W, so that if ¢, is known throughout this cross-
section, ¥ is also completely determined on it. To so determine ¢,, we need to know E, on

Exp;g (2(s) n W).
The union of this over all s would thus form S, were it not for the restriction (5.20) on E,. We
shall see below that this restriction can be removed, giving § precisely in terms of J* and the
above geometric constructions.

By (5.21), any such E, can be written in the form E, = X+H,, where H,, = H;,y, and con-
versely all £, of this form satisfy (5.20). We can use this to re-express (7.7) in a more convenient
form. Choose H,, arbitrarily, and let %,; = ki, z(s, x) equal Z,(H,,) in some neighbourhood of
8(5). Then by (5.15),¢,: = 0Phg, is given by e, = Z,(E,) in this neighbourhood. On using (5.24)
and (5.27), (7.7) then gives

f (hy, Y obu* — Y3*) AT, = (2r)~4 f Q*+H,, Dk, (7.8)
Z(s)

and (7.7) is equivalent to (7.8) holding for all such pairs (%, H,,). The results of § 5 now show
thatifany moments Q- exist satisfying (7.8) and (5.28) as well as the symmetry and orthogonality
conditions (5.32) and (5.36), then they are unique. This fixes all the moments of J* except the
monopole moment m?*.

It was shown in §5 of II that such @-’s do exist, and explicit expressions were found for them
as integrals of 3* over 2'(s). Moreover, it was seen that for any choice of m*(s), the support of the
functional (7.6) is not enlarged when the restrictions (6.3) and (5.20) on ¢, and E, are removed.
For these moments the above discussion shows that we thus have

SE)=2Z()nW, S=W, and §=U,Expz} (Z(s)nW). (7.9)

We can now verify that, as a consequence of the restrictions placed above on W, [ and n*, all the
assumptions made about §(s) and § are indeed satisfied. We can also verify (cf. (II, 6.3)) that,
as imposed in § 5, #* - 00 as k — co no faster than a polynomial in £. In fact, it diverges linearly
in k.

These proofs will not be repeated here; instead we study some other consequences of (7.7).
From (5.1), (7.2) and (7.7) we get

(%, b,y = m[Ey] - [ aqds. (7.10)
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Now in the present case, (6.1) gives
a(5,%) = Bu(x) = 0,0(s5, 1 (7.11)
for all x in some neighbourhood of §(s). Let 2 be any scalar test function on 7'M over 7 given by
2 =wod, (7.12)
as in (3.2), in some neighbourhood of §(S). Then from (3.10) and (3.11),
Voo = —0,V, 2 (7.13)
in this neighbourhood. Hence if we choose
Zl,=~0", (7.14)

which satisfies (5.15) as required, we have 9,0 = Z;(V4,2) in some neighbourhood of &(3),
and so from (7.11), ¢, = Z,(D,) also, where

This choice of Z; is equivalent to using (5.12) instead of (5.13) for ¢,.
Substitution from (7.15) into (7.10), with the use of (5.4) and (7.13), now yields

(% 8.5 = m[®@,] - [ (ag+m*2,0) ds. (7.16)

But from (7.11) and (6.12), 0,0 = ¢,(2z(s)). On using this and (6.18), we can thus rewrite
(7.16) as

(J2 > = m[D,] +J‘¢A(qv/‘ —m?) ds +fg—?A ds, (7.17)

where we have used the fact that A(s) has compact support to integrate the last term by parts.
Note that in (7.17), all mention of @ and ¢, has disappeared. It is true that @, has been con-
structed from w and e, but it is completely determined in the neighbourhood of § by its relation-
ship to ¢,, and since § is the support of m, this shows that m[®,] is completely determined
by ¢,. Now the arbitrary function A(s) occurs in (7.17) only in the last term. This term must

thus vanish identically, giving
dg/ds = o. (7.18)

If, in addition, we take mA(s) : = q(s) v}, (7.19)
thus defining the only remaining moment of J%, (7.16) gives
(% by = m[By]. (7.20)

In (7.18) we have recovered, by a tortuous route, the law of conservation of total charge.
The other result, (7.20), forms the basis of our final definition of the reduced moments of J*.
We now set this out as a theorem: Let J* be a C! vector field on M whose support satisfies the
conditions given at the beginning of this section, and let a world line / and timelike unit vector
field #*(s) along [ be chosen also in accordance with these conditions. Let #(s, k) be defined by
(4.15), in terms of certain tensor fields m- along ! satisfying (4.1), (4.4) and (4.5), and suppose
that for each fixed s, m* — oo as k£ — oo no faster than a polynomial in £. From it, construct the
functional m[E,] according to (5.1). Now suppose that there exists a bounded closed set

S'c NcTM
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such that if ¢, is any vectorial test function (i.e. a C* function of compact support) on M, then
(7.20) is satisfied for all test fields @, on T'M over 7 which satisfy

@, = Expig, (7.21)

in some neighbourhood of $’. Suppose further that no closed subset of §” also has this property.
Then

(i) We must have V,J*=0. (7.22)

Conversely, if J= satisfies this, then moments m~ and a region §" = N do exist having all the
required properties.
(ii) " = 8", where 8”0 = U Expzd (2(s) n W). (7.23)

(iii) The m-’s are uniquely determined.

(iv) mA(s) is given by (7.19) and (7.3), and satisfies the charge conservation equation (7.18).

(v) The higher moments are given by equations (5.66), (5.62), (5.60) and (5.58) of II as
explicit integrals over 2(s).

(vi) There are no algebraic or differential relations between the moments as a consequence
of (7.22), other than (7.18).

Before this is proved, a few comments on it will be made.

(a) Result (i) is essentially a consequence of the process of reduction discussed in the introduc-
tion. Although moments can be constructed for an arbitrary vector field by using the explicit
integral expressions of (iv) and (v) above, they will in general neither satisfy (7.20), nor contain
sufficient information to reconstruct the original vector field. In such a case it is necessary to use
the complete moments, defined in II, in order to have a set from which J* can be reconstructed.
Result (vi) shows that the reduction process is complete.

(b) Whereas the provisional definition (7.7) apparently builds in the hypersurfaces 2(s) as
the surfaces of integration over which the moments will be defined, this is no longer the case in
(7.20). Result (ii) shows that this choice of hypersurfaces is not a free one; it is a consequence of
the orthogonality conditions imposed on the moments. Since a change of »* will thus change
the surfaces of integration, it is clear that there can be no algebraic relation between the reduced
moments for different choices of #!, unless J* is assumed to be analytic.

(¢) The requirement that no subset $” has a similar property is not a trivial one; it was shown in
§3 of II that unless this is imposed, it is possible in certain circumstances to lose the uniqueness
of the corresponding moments. The restriction to closed subsets of 7'M is to prevent the trivial
omission of isolated points yielding subsets of S" which nevertheless have identical neighbour-
hoods to $’, and which thus impose identical restrictions on the relationship between ¢, and @,.

We turn now to the proof of this theorem. We first prove together both (ii) and the converse
part of (i). As before, let § denote the support of m. Then (7.20) can only be valid under the
given conditions if § < §’, for otherwise the value of the right hand side could be altered without
changing ¢,. But in the notation of § 5, also § = 2, and hence § = 8" n £. Similarly, W < Exp &,
for otherwise the value of the left hand side of (7.20) could be altered without changing that of the
right hand side. Hence W < Exp ($'n %), and so for each s,

WnZ(s) < Exp (S’ n Z(s)),

which by (7.23) implies $” = §’. But we have already seen that moments exist satisfying (7.20)
under the required conditions when S’ is the S of (7.9), which is precisely §”. The minimality
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condition on §’ thus ensures that §' = §” is the only solution. Hence necessarily § = $” also,
and 5(s) and § are as given by (7.9). As we saw above, we are now assured that the restrictions
placed on §in § 5 are satisfied, and so all the results of §§ 5 and 6 are valid.

Result (iii), the uniqueness of the moments, will be proved by deducing both (7.8) and (7.19)
from (7.20). Let h,4(s,x) and H,,(z, X) satisfy the conditions imposed on them in (7.8), with
Z, given by (7.14). Put

e, = 0fhy, and E, = X"H,, (7.24)

and construct from e, the functions ¢, (s, x) and w(s, x) of (6.1), and ¢ ,(x) of (6.16), according to
the methods of § 6. Pick a representative 2(z, X) of w as in (7.12), and @, of ¢, as in (7.21), and
put

Ci(z,X): =E\+V,, 0. (7.25)

Then ¢, = Exp 4 C, in a neighbourhood of §(). Hence with (7.21), (6.5) and (5.39) we have
m[®,] = m[C,], (7.26)
and from (7.25) and (5.4), m[C,] = m[E,] +fdsmAaAo). (7.27)

Use (6.9) on the last termin this, and substitute from it and (7.26) into the right hand side of (7.20).
On transforming its left hand side using (7.1) and (6.29), we obtain

m[E,] + f dsmA 3,y — a0, 7) = f ds f (e, wh — 3] 4, — f VY, Sedix — f agds. (7.28)
Z(s)

Now in this, a(s) and v(x) are arbitrary. By first putting @ = 0, v = 0 we obtain

f ds{ f [, wh — YA d, — (2m) 4 f B, Dk} ~ o0, (7.29)
Z(s)
and then by putting ¢ = 0 and v = 0 separately in turn, we get also
fdsm"a,\v = - fVVaS“d‘*x (7.30)
and q(s) = m(s) 0, 7. (7.31)

Since V3 is continuous by hypothesis, (7.30) can only hold for all »(x) if both sides vanish
identically. The vanishing of the right hand side then completes the proof of (i). The vanishing
of the left hand side is equation (II, 5.40), which was shown in II to imply that m* has the form
m* = kv*, for some constant £. On putting this into (7.31), we get £ = ¢(s), which is result (iv).
Now the relationships between %, 9 and H, , are all maintained if we replace them by

0(s) kap(ssx), O0(1(x)) ¥ (x) and 0(7(2)) H),(z, X)

respectively, where 8(s) is an arbitrary C* function of 5. In the s-integrand of (7.29), all the 6-
factors become 6(s), and by using the arbitrariness of 4 it then follows that the curly bracket in
(7.29) must vanish identically. This gives (7.7), from which (7.8), and consequently results
(iii) and (v), follow as discussed above. Finally to prove (vi), we put ¢,(x) = 0,w(x) in (7.20).
The corresponding @, can then be taken in the form V,, 2, and so (7.20) and (5.4) give (cf.
(7.16))
0, J% 0y = — [ M, wds,

which vanishes by (7.18) and (7.19). Hence (7.18) is the only restriction on the moments needed
to ensure (7.22), and hence it is the only restriction implied by (7.22), as required.
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We note for later use that if i is defined using (6.8) rather than (6.11), so that (7.4) is replaced

Y(z(s)) =0 and %;{r = —i“%ea (7.32)

by

in §(s) along the appropriate geodesic segments, then (7.29) is valid for arbitrary ¢,, and not
just for those satisfying o%¢, = 0. Its derivation immediately following (7.24) is still valid in this
case as the relevant results from § 6 did not use this restriction except in the deduction of (6.11)
from (6.8). However, we can no longer deduce (7.7) from (7.29), since replacement of ¢, by
0(s) e, (s, x) does not now correspond to i — 6(7(x)) ¥(x). This result was also proved in § 5 of I1I.

8. DEFINITION OF THE REDUCED MOMENTS OF 71%f

We now follow through this same procedure for 7%4, to obtain first a provisional definition of
the reduced moments, and then a more satisfactory final definition. Let ¢,; = @(,p(x) be a
tensorial test function on M. Starting from

Cap(8:%) 1 = Pap(%)s (8.1)
follow through the constructions of § 6 with the tensors 4,(s) and B,, = B(s) of (6.55) being
chosen arbitrarily. This first gives us e, (s, ¥) and (s, x), from which we construct v, (x) by (6.39),
a.(s) and b,,(s) by (6.41), and ¢, (x) by (6.42) and (6.45). Then by substituting from (6.44) and
(6.42) into (5.9) and using (5.11), we obtain

(T8, > = f ds f (e0p Tu? — 1, T7) A5, — f (@ % + 35, 5Y) ds + f Fobw, dix, (8.2)
Z(s)

where pE(s): = K¥+tdZ,
2(s)

(8.3)
and SkA(s): =2 H kgNFePd Xy,

Z(s)

When F,; = 0, the definitions (8.3) agree with those of the momentum and spin tensors p*
and §** given by equations (I, 5.1) and (I, 5.2), butif F,; + 0, p* and $** contain electromagnetic
contributions which are absent in (8.3). However, when F,; # 0, (8.2) differs from the analogous
equation (7.2) for 3 by still containing »,(x). These two discrepancies are connected, as will now
be shown.

On using (6.39), the final term in (8.2) can be written as

fF"‘/"%ﬂva dix = fds Febo (s, %) Spwrd,. (8.4)
2(s)

Now define ep(s, %) = Fop0™ (8.5)
From it construct {(x) asin (7.32), and pick an E, (z, X) given by Exp ¢, in some neighbourhood
of §(8). Then on using (7.29) and (5.1), we can put (8.4) in the form
[ FebSyw,d% = m[E;] + [ ds [ y32dZ,,. (8.6)
We next separate out the dependence of ¢ on 4, and b,,, using (7.32), (8.5), (6.42) and (6.45).
Choose bitensors %, (s, x) and @, (s, x) of compact support on each tangent space 7, (M) and
satisfying W (s,2(s)) = 0, d¥,(s,x)/du = i#K*F,,, (8.7)
D, (s5,2(5)) = 0, d(ud,)[du = uilH* F,, (8.8)

13 Vol. 277. A.
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along all geodesic segments x*(#) having x(0) = z(s), « as an affine parameter, and lying in some
neighbourhood of S(s). These definitions agree with those of equations (I, 3.14) and (I, 3.15).
Further, choose a y(x) of compact support and satisfying

X(z(s)) =0 and dy/du =a°F, ¢ (8.9)
along those geodesic segments lying in §(s). Then  is given on S(s) by
P(x) = x(x) = a(s) P<(s, %) = b (s) 07 (2(s), %) P*(s, %) (8.10)

If we now substitute this into (8.6), and the result into (8.2), we obtain

(T, 6,5 = j ds f (eapTHw — 1, T + ¥ AZ, +m[E,] - f (a5 + 3, SN ds, (8.11)
8)

(

where pe(s): = f o KT+ 9 42, (8.12)

and SEA(s) ¢ = QJ o (H TP+ DIFF) d Xy (8.13)
2(s)

These p* and S¥* are precisely the momentum and spin tensors defined in §5 of I.
Equation (8.11) is the true analogue of (7.2), and we use it to suggest the appropriate pro-
visional definition of the moments of 7%/, By analogy with (7.7), we require

f 2(s) (ap TP07 =, 17 +437) A2, = (Qn)ﬂfpﬂEMDk (8.14)

for arbitrary symmetric £, ,(z, X) satisfying (5.20), and any e,,(s, x) satisfying (5.19) and given
by Z,(E,,) in some neighbourhood of §(s). As before, we can use (5.22) to put (8.14) in an equiva-
lent form. Let H,,,,(z, X) be an arbitrary test field on TM over 7 satistying the symmetry con-
ditions of (5.22), and let k,,5(s, 8) = Zy(H,,,,) in some neighbourhood of §(S). Put

KApup
B = XrX'H, 0 eyt = 070y . (8.15)

Then on using (5.26) and (5.27), we get (8.14) in the form
f (g 0700 T2ur — i, Toe 4 3) A2, = (2m) f Jewfl, Dk, (8.16)
Z(s)

As was the case for (7.8), if any J’s exist satisfying (8.16) with (5.29) then they are unique and
give all the moments of 7%/ except for the monopole and dipole moments I# and I**#, We shall
show in §9 that such J-’s do exist, and that for any choice of I*# and I**#, the domain of depen-
dence of the right hand side of (8.14) on E, , is not enlarged when the restriction (5.20) is removed.
The support S of I[E, . is thus given by (7.9), just as was the case for m[£,]. For the present we
shall assume these results and shall continue to follow the method leading from (7.8) to (7.20).

On substituting from (8.14) into (8.11) and using (5.2), we obtain

(T, $opy = I[E\ ] +mE)] ~ [ (0 p*+ 3D S5 ds. (8.17)
Now from (8.1) and (6.2) we have
eaﬂ(sa x) = ¢cxﬁ(x) —V(uwﬂ)(‘s) x) (818)

in some neighbourhood of S(s). We wish to find an equivalent relation between E,, and the
corresponding images under Z2of ¢,; and w,. Following the analogy with § 7, it should be at this
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point that it becomes clear what choice to make for Z,* .. However, in this case both choices (5.12)
and (5.13) will still seem equally natural, while it will no longer be possible to work with a general
Z,. We shall thus continue to work separately with both these choices for the time being, labelling
corresponding equations by a suffix (a) or (5). For later use, we shall not deal with (8.18) directly,
but instead with the original (6.2), of which (8.18) is a special case.

For a fixed value of s, we can express (6.2) as

Cap = ea/i"l'%ngaﬂ (8'190)
or as cih = b —LL g*P. (8.195)
If we decompose w* according to (6.69), we see from (6.70), (3.26) and (3.22) that L, commutes
with Exp 4. Also, since the A* of (6.69) is the solution of (6.54) with the initial conditions (6.55)

having 4, = 0 and B,, = 0, we see that this A~ satisfies (3.20) and hence L, satisfies (3.18).
Now choose tensorial test functions on 7'M over 7 satisfying

E,, = Exp4e,; and G,, = Expg,, (8.20a)

or E* = Exp4e*f and G* = Exp4 g+, (8.200)

and also A« = Exp4 A%, (8.21)

in some neighbourhood of §, and such that E,, satisfies (5.20). Then if we put

Cop = Exy+ 3L G+ $L4 G s (8.22q)

or C\ = EAv — 3L, G — 4L, G, (8.22h)
we see that C,, = Exp4¢,, or C* = Exp4¢*# respectively, in this neighbourhood. Now

L,Gy, = AV 4, Gy, + 26, Vi p A5, (8.23)

and if we put My: = G,, 4%, (8.24)

this becomes L,G,, = 2V M)~ AV 4, Gy . (8.25)

The terms involving derivatives of A* thus occur in (8.224) in the form of a symmetrized deri-
vative V,, M, to which (5.5) may be applied. On lowering the indices in (8.225), however, we
find that derivatives of 4, occur on the right hand side in the combination

g/lpg/w'LAGpU = AKV*KG/\IL— 2(V*KA‘(/\) G/tf, (826)

which cannot be similarly converted into a symmetrized derivative. On these grounds we adopt
the choice (a), and shall from now on work solely with this.

To use (5.5), we see that we need to know V,,M, and V., M, when X* = 0. To find these,
we first deduce from (8.204) and (3.16) that

Gz, %) = H,H*,. (8.27)

We then use (3.11) and the coincidence limits of derivatives of H,, derived in the appendix
of I1. The result simplifies since A*(z, z) = 0, and we finally obtain

Vi, =V, A,y VM, =V, A, when X*=0. (8.28)

K
The convention on the right hand sides is again that V, A, denotes the coincidence limit of
V,As(x,z) as x = z. These can be further evaluated using (6.54), (6.55) and the definition of

A“in (6.69), toglve g pr . VeaM, = Von when X'=o. (8.29)

13-2
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Now return to the choice (8.1) for ¢4, and correspondingly write C,, as ®@,,,. Substitute from
(8.224) and (8.25) into (8.17) and use (5.5) with (8.29) on the term IV, M,]. Also, since it is
A, and B,, rather than g, and b, that are arbitrary in our construction, substitute from (6.59)
and (6.62) into the final term of (8.17). If we then integrate by parts the terms in 84,/ds and
8B,,/ds, we finally obtain

(T, P gy = I[Py, + 34V 4, Gy — 3L, G, ] +m[E,] + f ds {4, (5p[ds + Ry SAv”)
+ 3B (882 [ds — 2ppN)} — f ds{(IM — prom) @y, + (I8 = §<Cy) V., &, 3. (8.30)
By analogy with (7.19), we now choose
I = pQyr and  [KA# = SKQym, (8.31)
which satisfy identically the symmetry conditions
) LY (CV R VI OVR (CVO ) (8.32)

required by (4.7) and (4.10). This completes the definition of the moments, and makes the final
integral in (8.30) vanish.

We next want to use the arbitrariness of 4, and B,, to give the equations of motion. These arbi-
trary functions occur in (8.30) in a much more involved way than the occurrence of 4(s) in
(7.17), as they occur in the arguments of / and m as well as in the explicit integral over s. They have
been separated off in the argument of I into the term — }L,G,,. We must next perform a similar
separation in the argument E, of m.

From (8.5) and (6.69),

tp = A*F g+ E2F 5, (8.33)
and E, = Exp4e,. As in our treatment of (8.19), we shall treat each term in (8.33) in a different
way under the action of Exp4. We first introduce, for each z, a particular choice of vector poten-
tial for 4. In doing so, we use for the first time the Maxwell field equation

VigFoup = 0. (8.34)

Let 4,(z, ) be the vector potential satisfying
0%(z,5) A, =0 (8.35)
in addition to Fo=Vy4,-V, 4, (8.36)

By multiplying (8.36) by o and using the techniques of the proof of (6.37), we then find that
d(uH*\ 4,)[du = uifH*, F 5. (8.37)

There is a unique solution of this which is finite at x = z, and on comparison with (8.8) it is seen
to be given by
H% A,(2(s), %) = Dy(s, %). (8.38)
Hence, on using the convention of §3 of not distinguishing notationally between the fields @
and ® of (3.2), we have
®, = Exp44,, (8.39)
which with (8.36) and (3.11) gives Exp4F,; = — 2V, @, (8.40)

From (8.21) and (8.40), we thus see that the contribution to E, from the A*term in (8.33) is
= 24%V 4, Py
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We turn next to the £-term. This may be rewritten as
E2F,p = Vy(E2A4,) +EV, Ay~ L Ap, (8.41)
on remembering that in L, 4, we must treat 4, as a vector at x and as a scalar at z. From (8.39),
and (3.22) with A* = £, we have Exp4 LA, = L, ®,. (8.42)
It thus remains only to deal with the first two terms on the right hand side of (8.41). We do this
by showing that there exists a scalar field Z(z, X) on 7'M such that
ExpA [V,(£°4,) + £V, 4,] = Vo Z. (8.43)

The corresponding contribution to m[£,] can then be evaluated using (5.4). To prove (8.43),
we note that any other vector potential can be obtained from 4 ,(z, ) by adding the gradient of a
scalar. There must thus exist a biscalar 6 (z, x) such that (4,(z, x) +90,6(z, x)) is independent of z.

Hence V, 4, = -V, 0. Since £%(z, z) is independent of x, we thus have

Vy(E2A,) + £V, Ay = V4(£24,—EV,0), (8.44)
and so (8.43) is satisfied with Z = Exp4 (¢#4,—£+V,.0), (8.45)
as required.

In using (8.43) in (5.4), we need to know the coincidence limit of (8.44) as x — z. Coincidence
limits will be denoted by diamond brackets. Then {(4,) = 0 by (8.35), and so on using (II, A 15)

we see that also (Ledgy = EVLAD+(AT € = 0. (8.46)
Hence from (8.41), (Vp(824,) + 8V, Ag) = (E*F o) (8.47)
as required. On piecing together the above results, we finally obtain

m[E,] = m[245V 4, By — L ®,] + [ ds & F,,, (8.48)

in which the desired separation has been achieved.
Use & = A% in (8.48) and substitute it into (8.30). Since 4% and B** are arbitrary, the resulting
expression separates into two equations analogous to (7.18) and (7.20). We obtain

(T, ¢ oy = 1[D),+ 34V 0 G ] +m[24%V i, D] (8.49)
)
and AK<—d—5 4 bR SN 4 gF%, vﬂ) + 1B (as} e~ 2prkw)
= (2n) [ DE{3I LG, + m L, B, }. (8.50)

In (8.50), we have used (3.28) to bring L, outside the Fourier transformation. Equation (8.49)
will form the basis of the revised definition of the moments, while (8.50) decomposes into the two
equations of motion.

These are the most important equations of the theory. Before continuing, let us consider some
of their features. We have already seen that the allowed fields £*(z, x) include all Killing vectors
that the space-time may possess. So suppose that £%(«) is a Killing vector field satisfying

LiF,;=0 aswellas Lyg,, = 0. (8.51)

We may then use it in (8.50), giving a £* independent of z, if we take 4, = §, and B,, = V. £,
However, (8.51) implies also that

LG,=0 and L, =0, (8.52)
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so that the right hand side of (8.50) vanishes. We thus recover equation (I, 5.5). But whereas
in I we could only derive those components of the equations of motion corresponding to conserved
quantities, we now see quantitatively how forces are produced by a breakdown of the symmetry
conditions (8.51).

Consider now equation (8.49). The concept of ‘reduced moments’ relies on the use of the
differential relations (1.31) and (1.32) to eliminate redundant components from the complete
moments. It is thus inherent in this concept that the gravitational and electromagnetic forces
described by (1.32) will occur in the definitions of the reduced moments of 7*# even though they
do not do so in the complete moments. For this reason we do not expect the gravitational ana-
logue of (7.20) to be as simple as that equation; somehow the applied forces must enter. We see
in (8.49) how they occur; they are responsible for the A-terms. We show now that these terms
are remarkable in their simplicity. At a particular point z(s), set up a normal coordinate sys-
tem as in the discussion following equation (3.16). Then from that discussion and equations (8.40)
and (8.204), we see that the coeflicients of A% in (8.49) are simply the values in normal coordinates
of

F,p and [af,v]: = $0,4,p-

The first is simply the electromagnetic field tensor. The second is a Christoffel symbol of the first
kind, which is about the most naive and basic description of the strength of the gravitational field.
About the simplest way of giving a covariant meaning to a non-tensorial quantity such as [af, ]
is to evaluate it in normal coordinates. The coefficients of A are thus about the simplest con-
ceivable measures of the electromagnetic and gravitational fields. This simplicity is regarded
by the author as ample justification for taking (8.49) as defining the reduced moments, despite
the fact that the explicit integral expressions for the moments to be given in the next section are
quite complicated.

It should be remarked that it is possible to proceed also with the alternative (8.205), which we
later abandoned. This yields simpler explicit integrals for the moments, at the expense of sub-
stantially complicating the analogue of (8.49). It is this choice that puts the equations of motion
in the form given, without proof, in Dixon (1973). At the time of writing that paper, I was un-
aware of the result (8.49) arising from the choice (8.204), and I now consider that this consider-
ably outweighs the extra complication of the explicit forms for the moments.

9. EXPLICIT EVALUATION OF THE MOMENTS

The next task is to fill in the logical gap left after equation (8.16), by proving that moments do
exist satisfying this equation under the stated conditions. We do this by obtaining explicit expres-
sions for the moments as integrals of 7%# over the hypersurfaces 2'(s). This involves expressing
hapyss o and ¥ in terms of A, .»» which we do successively. In this section we shall let S(s), § and
S have the values given in (7.9).

From (2.25) and the Fourier inversion theorem, we have

H

K

aw(2 X) = (2n)*4fT ﬁk,m,,(z, k) exp (—ik.X) Dk. (9.1)

But also, by (3.15), hapys = O5F 0o kod Hyy (9.2)
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in some neighbourhood of §(s), since #,,5 = Exp 4 H,,,, there. If we expand the exponential in
(9.1) in a power series, we thus see that

Boyps VP THur AT, = (2m)~4 f DkHWn%E (—l)nkkl...kkntn--wn/\w(s), (9.3)

2(s) “~ n!
where the #’s are defined by

ekt (s) T = (-—1)”]2(90*1...0"71 ol oty TbwrdZ, if n > 2. (9.4)

To treat 1, we must first define a propagator @*#*(z,y) for each n > 2, analogous to the @2
n n

defined by (I1, 5.55). If x(«) is any geodesic with affine parameter u, and if x(0) = z, (1) =y,
then we put .
?"""”’(z, y) = (n— I)J‘0 oregt oo yn=2du for n > 2, (9.5)

where the arguments of the ¢”s are (z, x(«)). In flat space we get

@K/l,uv(z’ y) = gK(/th)/\ (9.6)
for all » and all y, which is why the factor (rn—1) is included in the definition. Now i, (x) is
defined, by (6.42) and (6.45), in terms of the solution of (6.38) when the functions a,(s) and b, (s)
used in the initial conditions (6.48) are taken as zero. But under these conditions we showed that
(6.38) can be integrated once to give the simpler equation (6.52). We thus obtain ¢ from (6.52)
with e, given by (8.15). If we then further use (9.1) and (9.2), the resulting equation can be
explicitly integrated to give, for xeS(s),

i 1
= —2(2n)H o | Dk H — (ik. o)™ O 9.
Vale) = = 2020) A H o0, 000 [ Dk By 3 oy i) 0570, (9.7)
where k.o : = k*o,(z(s), x) and the arguments of all bitensors are (z(s), x).
To evaluate y(x), we must substitute (9.7) into (8.9). To integrate the result, we need yet
another propagator, defined in the notation of (9.5) by

1
DM (z,y) = (n+ l)f F,,H*H* @rwyndu for n> 2. (9.8)
n 0 n

We then find that for x€.S(s),

Nt 1
= 2(2r)* noe | DEH. s (1k. o) PKTAY .

X(x) ( TC) v,0.000 J‘ /l/wpn§0 (72+ 1)! (72+3) (lk U') n?2 s (9 9)

where again the arguments of all bitensors are (z(s), x).

From (9.7) and (9.9) we sce that
B Fap )= —4 < ﬂ K1 eve K AVpOT
Jz(s)[xﬁ Tobfr, 1d2y = (2x) vTJ‘D/cHM,,pn%,O (n+1)!k"1"'k‘<np 1 p (9.10)
where, forn > 2,
P a9 1) f ... o [@PWH,W Tt 4 L pong sﬂ] dz,  (9.11)
Z(s) n n+1, £
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Taken together with (9.3), we thus see that (8.16) holds under the required conditions if

1

JK1-kn Apvp — ey kplAlvpdpl 4
n+1

prsdaery - for > 0., (9.12)

These are easily verified to satisfy the required symmetry and orthogonality conditions (5.33)
and (5.36). It remains to check the behaviour of 7+ for large &%, and the assumptions made con-
cerning the support of the functional I. To do this, we must evaluate the moments /- using (5.35)
and then explicitly sum the series for 7<* given in (4.16). The method of summing the series follows
that used by Dixon (1967) in the derivation of equations (3.34) and (3.35) of that paper. The re-
sulting lengthy expression has little intrinsic interest, and so it will not be given here but only the
conclusions that can be drawn from it, as the method of arriving at them is well illustrated in the
earlier paper. We can first deduce that I*}(s, k) diverges as k£ — oo at most quadratically in £. As
this guarantees the convergence of all the k-space integrations, we can then substitute this ex-
pression for 7«2 into the right hand side of (8.14). The k-space integration turns out to be easily
evaluated using the Fourier inversion theorem even when £, , is not required to satisfy (5.20),
the result then being an integral expression involving E, , itself. The support S of the functional /
can be read off from this expression, and is seen to be as given in (7.9), as required.

This completes the proof of the existence of the reduced moments as provisionally defined
in §8. We have incidentally obtained explicit expressions for them, but these are somewhat
unwieldy. Their importance lies mainly in their mere existence; for theoretical work with the
reduced moments, one will generally use instead one of the defining relations (8.14) or (8.49).
It is for this reason that the simplicity of (8.49) is considered to outweigh the complexity of the
integral expressions, as remarked in the previous section.

10. STATEMENT OF THE MAIN THEOREM

We can at last state and prove the main result of this paper, namely the uniqueness theorem
for the reduced moments of 7%, Since the defining relation (8.49) involves the moments of J*
as well as those of 74, we shall state the result as a combined theorem for both fields, although
the part referring to J* has already been proved in §7. The theorem will be stated in as self-
contained a form as possible without undue repetition of lengthy definitions and conditions, and
clear reference will be made to any previous statements when required. In this way the state-
ment of the theorem can also act as a summary of the work of the paper so far.

Consider a space-time manifold M containing an electromagnetic field described by an anti-
symmetric tensor F,, satisfying

ViaFp, = 0. (10.1)
Suppose that this space-time contains a charged body of finite extent, occupying a world tube W.
The theorem connects two alternative descriptions of such a body, provided that it is not too large.
For simplicity we also assume that the body is convex. These restrictions are made precise by
requiring W to satisfy the conditions given in the fourth paragraph of §7.

The first description is in terms of a charge-current vector J* and a symmetric energy-momen-
tum tensor 7%, These are required to be of class C, i.e. to have continuous first derivatives. For
convenience, we shall also suppose that J* and 7% are both nonzero throughout I, so that they
each have support W.

The second description is by two infinite sets of multipole moments, given as tensor fields
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along a C timelike world line /. We parametrize [ as z*(s), where s is not necessarily the proper
time, and write the moments as m*1--*n#(s) and I #*(5). They are defined for each n > 0, and
are required to satisfy the symmetry conditions

mdat = pthaeedd e for p> 2
(10.2)
and m(Al'"An/‘) = O fOI‘ n > 13
and TMedppy — JQr. 29 () for = 0,
(10.3)
JAuy) = 0, and My =0 for n > 2.

But / alone is not a sufficient reference frame to which to attach the moments. In addition, we
choose a C= field of timelike unit vectors n* along /. The moments are then required to satisfy the
orthogonality conditions
mymir-tnalal = 0 for n > 2
nz3 }

. 10.4
and n, M Ao a2 = 0 for ( )

In the second of equations (10.4), the antisymmetrization denoted by the square brackets is over
(Ay—1, ) and (A,, v) independently, in accordance with the notation of Schouten (1954). The
choice of / and #»” is fairly free, but we require them to satisfy certain geometrical restrictions
which are again given in the fourth paragraph of §7.

The two descriptions are linked through the use of the moment generating functions #* and

I'v, defined by

(s, k): = 3 (“n})”kkl...kknmxl-wm(s) (10.5)
n=0

and Du(s k): = % (—n:)nk,ﬁ...kknl"l-""n"ﬂ(s), (10.6)
n=0

where £% is a vector at z*(s). As a further condition on the moments, we suppose that for each
fixed s, these functions diverge as & — oo no faster than a polynomial in £. We see that m*
and I*# are not true tensor fields on M; their domain of definition is really that part of the
tangent bundle 7'M of M over {. They are such that their value at Xe7,(M) is a tensor on M
at z. As discussed in §2, a field with this property is said to be a tensor field on T'M over 7, where
7: TM — M is the projection map of the tangent bundle.

If E (indices suppressed) is such a tensor field, its Fourier transform £ is defined by

Bz : = f  E(z,X)exp (i#'X,) DX, (10.7)

where DX is the scalar volume element on 7, defined by (2.18). This is again a tensor field on 7M
over 7. Using this, we now define two functionals m and I. Their domains of definition are the
spaces of all tensor fields on TM over 7, of the appropriate type, which are of class C* and of
compact support. They are given by

m[E]: = (27:)“4fdsz | (s, k) E)(z(s), k) Dk (10.8)
and I[E,,]: = (2x) "4fdsz (s, k) E,\#(z(s), k) Dk, (10.9)

14 Vol. 277. A.
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108 W. G. DIXON

where E,, = E, . The above assumption on the behaviour of #* and I+ ensures that these
integrals are absolutely convergent.

We next define two functionals associated with J* and 7%, but these are much simpler. If
¢, and ¢, are C* tensor fields on M of compact support and ¢, = ¢(,p, We put

4 dy: =] J“¢M/ g) dx (10.10)
and (T, Gogy: = [ T 0 (—g) dix. (10.11)

The linkage is then completed by expressing (10.10) and (10.11) in terms of m and I, but
before doing so, we must first define an auxiliary bitensor field A%(z, x). This has scalar character
at z and vector character at x, and such a A* is to be associated with every ¢,,. It satisfies two
conditions. First, that

A, >0, V“/\ﬁ—-qﬁaﬁ -0 as x-—>2z. (10.12)

Secondly, for each ze W, if x(u) is a spacelike geodesic through z, then A*(z, x(u)) satisfies

T 2/\a+RaM¢ﬂ¢W = #irV 3 b (10.13)
along that portion of this geodesic lying within W. Here, 4*: = dx*/du, and the notation { }
around the indices is defined in appendix 1. These conditions determine A%*(z,x) completely
for all pairs of points z, x € W which have spacelike separation. We continue A% arbitrarily to all
other points, subject only to its having class C=.

Two further definitions are needed before we can state the main hypothesis of the theorem.
Let N be the region of TM on which the exponential map is well behaved. (This is defined
more precisely in §3.) If ¢=-; (z,x) is a bitensor field on M with scalar character at z, and if
@r-y  (z,X) is a tensor field on TM over 7, we say that @ = Exp4 ¢ in a region R < N if

Py (2, X) = (—03) o HEy L oy (2, 5), (10.14)
where ¥ = Exp X, for all (z, X) € R. The inverse relation is written as ¢ = Exp_ ®. Here,
T4 = 020 [0x*0z%,

where o is the world function biscalar, and H#< is the matrix inverse of (— o,,). A simple interpre-
tation of this using normal coordinates is given in §3. Also, for any tensor field on TM over 7, we
denote partial differentiation with respect to the components of the argument vector X* by
Vi asin (2.16).
Now let 8" be a bounded closed subset of T'M satisfying §* < N. Suppose that the functionals
(10.10) and (10.11) satisfy
(J% @ap = m[D,] (10.15)
and (T, Pogy = I[P+ 34V 3 Gy ] +m[A%f] (10.16)

whenever @,, @, ,, G,,, f,, and A~ are all C= tensor fields on TM over 7, of compact support,
which satisfy
¢/\ = EXPA ¢oc9 ¢/\‘u = EXPA ¢acﬁ’ Gz\,u = EprgaﬂD }

10.17
fiu=Exp4F,, and A<= Exp4A ( )

in some open neighbourhood of §’. Suppose further that no closed subset of $’ also has this
property. Then
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(i) Itis necessarily true that J* and 7% satisfy
V,Je =0 (10.18)
and VT = —F*b ], (10.19)

Conversely, if these equations are satisfied, then moments m~ and I+ and a region S’ do exist
satisfying all the conditions of the theorem.
(if) The region $” is unique and is given by
S = U Exp;d) (Z(s) n W), (10.20)
where 2(s) is the hypersurface formed by all geodesics through z(s) orthogonal to n(s).
(iii) The moments are all uniquely determined, and for a given value of s they depend on J*

and 7%f only through their restrictions to Z(s) n W.
(iv) The lowest three moments have the special forms

mt = qut, I = pPyn) [k = SKQym), (10.21)
where §¥4 = —§* and v* = dz?/ds.
(v) The s-dependence of these lowest moments is uniquely determined. We have
dg/ds = 0, (10.22)

and 8p~/ds and 8S%}/ds are determined by (8.50).

(vi) gisthe total charge of the body, while p© and §** agree with the definitions of total momen-
tum and angular momentum deduced in I on other grounds.

(vii) There are no other algebraic or differential relations between the moments, as a conse-
quence of the ‘conservation equations’ (10.18) and (10.19), other than those given in (v).

In connexion with (iii), explicit expressions for the m’s were given in II, while explicit expres-
sions for the I’s were derived in §9. The equations of motion referred to in (v) are considered in
more detail in §§12 and 13 below.

11. THE UNIQUENESS PROOF

We now turn to the proof of those parts of the above theorem that have not yet been demon-
strated. The converse part of (i) has already been proved, and result (ii) is shown by the same
method as used in §7 for the corresponding result for J* alone. We can thus again take §" = §,
and let §, § and S(s) be unambiguously given by (7.9). Note, incidentally, that (ii) follows
either from (10.15) or (10.16), so that it is not invalidated when we consider the case F,; = 0,
when all reference to J* can be deleted from the theorem. So, as for J#, we turn to the proof of
(ii1). The uniqueness of the m’s has already been shown; this leaves that of the I’s still to be proved.
We do this by deducing both the provisional definition (8.14), and also (8.31) with (8.12) and
(8.13), from (10.16). The method follows that used in § 7 for J*, but has additional complications
due to the A-terms in (10.16).

Asin (8.14), let E, , be an arbitrary symmetric tensorial test field on 7'M over 7 satisfying

X'E,, = 0. (11.1)

Choose a symmetric test function ¢,4(s, x) which satisfies
0%, = 0 (11.2)
identically, and E,, = Expie,, (11.3)

14-2
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110 W. G. DIXON

in some neighbourhood of §. From it, construct the functions Cap(5, %) and w (s, x) of (6.2), using
the method which starts in the paragraph containing (6.38). In so doing, the functions v, (x) of
(6.39) and a,(s) and b, = b (s) of (6.48) will be chosen arbitrarily. From these, we then con-
struct ¢,5(x) by (6.43), ¥, (x) by (6.45) with (6.42), 4,(s) and B,,(s) by (6.56) and £*(s, x) by
(6.70).

We shall apply (10.16) with this choice of ¢4, but we must first show that we can modify the
defining relations for A* without affecting the validity of (10.16). This is done in two stages. From
(5.6), (5.7) and (10.17) we first note that the right hand side of (10.16) depends on the values
taken by A%(z, x) only for ze /. We can thus replace A*(z, x) by a more restrictive function A%(s, x)
corresponding to z = z(s). We next show that if we alter (10.13) by replacing ¢,,(x) on the
right hand side by ¢,4(s, x), we do not affect the value of the right hand side of (10.16). From (5.6)
and (5.7), we see that this is the case provided that the alteration does not affect the values taken

by Ly Veu(X'L), Loy Veu(X'L,) and Vi, (X<XAL) (11.4)
on §, where Lo = A4 Gy,  Ly: = A4fy,. (11.5)

Now A is a special case of the w* of § 6, corresponding to taking 4, = 0, B,, = 0 in (6.55). The
result (6.63) is thus applicable, and it shows that the replacement concerned does not affect the
valuesof A, and VA, for x €8 (s). This is sufficient to show that the first four of the five expressions
in (11.4) are unchanged on §. It remains to consider the final expression. We deal with this by
showing that XX*L,, is identically zero for all A#, so that this term is certainly unaltered.

Since X* = — Exp4 0%, we get from (10.17) that around S,

XGy = Xy = X<gp (11.6)
By differentiation, this gives XV ,Ger = g — G (11.7)
With (11.6) this gives XXM Wy, Gy = XXV, G,y = 0, (11.8)
and hence with (11.5), X<XAL, =0 (11.9)

identically, as required. This completes the above proof. On checking the various definitions
involved, we see that we can now take
A* = o — £, (11.10)
With this choice of A%, and with ¢,, constructed as specified above, choose tensor fields
D, > Grps S, and A¥ on TM over 7 in accordance with (10.17). Now observe that (10.17) and
(11.3) agree with (8.204) and (8.21), and that (11.10) agrees with (6.69). It thus follows, as in
§8, that if C,, is defined by (8.224), then C,, = Exp4¢,; in some ncighbourhood of §. Together
with (5.39), (6.6) and (6.43), this gives
1[9,,] = I[C,,]. (11.11)

But for the same reasons, (8.28) holds if M, is defined by (8.24). On using these together with
(5.5) and the identity (8.25), we then obtain
1Dy, + 34V 3Gyl = I[Ep, + 3L, Gy, ] + [ds[P¥V, A, + TV, A, ]. (11.12)

The final step in treating this term of (10.16) is to substitute for A* from (11.10). To do so, we
need to evaluate the coincidence limits {V(, £4)> and {(V ,;£,)), using the diamond bracket nota-
tion as in (8.46) and (8.47). This may be done from (6.70) using the results of the appendix of
I1, and we find that both are zero. Hence (11.12) becomes

I[D,,+ 34V 3 G, ] = I[E,, + 3L G,,] +fds[["ﬂV,\a)ﬂ+I""”VK,\wﬂ]. (11.13)


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

EXTENDED BODIES IN GENERAL RELATIVITY. III 111

We turn next to the electromagnetic terms in (10.16). From (10.17) and (8.40) we see that we

can take
f/\,u = _2V*[/\q§ﬂb (1114)

where @, is defined by (8.8). Also, if we define ¢, and £, as in (8.5) and the following sentence,
the steps leading from (8.33) to (8.48) all remain valid. We thus get from (8.48) and (6.70) that

m[A%f,3] = m{Ey + Ly ®,] - [ ds g A*F,,. (11.15)

To continue, we must first note that (8.2) remains true, with a slight modification, with the
present definitions and with p* and S¥* still defined by (8.3), even though (8.1) is now replaced
by the weaker condition (6.43). The modification is the replacement of the final term by

— | v, VT d4,
[EAY

needed since we are no longer assuming (5.11). Similarly, the steps from (8.5) to (8.10) still
hold, using the definitions there given. We can thus substitute for the three terms of (10.16) from
the modified (8.2), and from (11.13) and (11.15). Do so, and then substitute for m[ E,] in the result
from (8.6), and for ¥ from (8.10). If we define p*(s) and S*A(s) as in (8.12) and (8.13), the final
result can be put in the form

fdsf (€qp TFwY — i, T + ¥J) A2, = I[E,, + L, G, ] +m[L; D,] +fds[I"/‘V,\wﬂ
+ IV 0, + a pf + §b, SR — qur AFF,, ] +fva(Vﬂ T+ FoPYp) dix. (11.16)

The required results all follow from this on using the arbitrariness, for given e, 4, of a,(s), b,,(s)
and v,(x). The other variables occurring in (11.16) which depend on these arbitrary quantities
are £ w, and 4%, their dependence being given by (6.39), (6.56) and (6.70).

We first consider the special case E,, = 0, ¢,5 = 0, a, = 0, b,, = 0. We may then take w,(s, x)
as independent of s by (6.38) and (6.48), and hence by (6.39) we have w,(s,x) = v,(x) for all s.
This also implies ¥, = 0 by (6.45) and (6.42), and hence y = 0 by (8.9). For this case, (11.16)
thus reduces to

I[3L, Gy, ) +m[ Ly @) + [ ds [IAV,0, + IV v, — g A<F 5] = — [v,(V, T + F*AY,) dtx, (11.17)
where £2 is given by (6.69) and A4.,=v, B, =V (11.18)

The left hand side of (11.17) thus vanishes if v, = 0 in the neighbourhood of the world line /.
Since V, T*# + F*AJ; is continuous by hypothesis, (11.17) can thus hold for all v, only if both sides
are identically zero. The vanishing of the right hand side gives (10.19), and completes the proof
of result (i). We now consider the implications of the vanishing of the left hand side.

For this, it is convenient to use temporarily a coordinate system in which /is given by z¥ £ con-
stant, £ = 1, 2, 3, and to let latin indices run only through the values 1, 2, 3. Since we can specify
v, separately on each hypersurface 2° = constant, subject only to restrictions of continuity, we
see that along / we can give independent values to v, and its spatial derivatives

Vs OgVes oo e

Consequently, while keeping v, and V,», fixed along /, we can still vary Vv, arbitrarily.
Since second derivatives of v, occur in (11.17) only in the term involving IV, v, this arbi-

trariness implies N :
Joe = 0, (11.19)
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Butfrom (10.3), 2]Amy 4 e = 0, ' (11.20)
and hence (11.19) implies Ink £, (11.21)

Now by construction, v* Z 0, and hence (11.21) can be written in the covariant form
(Ay — k<k,) (A} — kM) Irve = 0, (11.22)

where £ is a unit vector in the direction of »*. Since I/ = [#*A), on expansion of (11.22) we see
that /##4 has the form
Jred — gﬂ(Kvl) (1 123)

for a suitable tensor field $#(s). On substituting (11.23) into the second of the conditions (10.3),
we see that §» must be antisymmetric. This proves the part of (iv) referring to Jx\x,

Let us now briefly return to (11.16) itself, and use (11.23) to simplify the relevant term in this
equation. Together with (6.55) and (6.60), we find that it gives

[0, = 484 (% B — bm) ~ 1R, Sctor A, (11.24)
In the special case of (11.17), this is applicable with v, = v, b,, = 0, and on using it we obtain
the left hand side of (11.17) in a form which no longer involves second derivatives of v,.

The terms in (11.17) involving first derivatives of v, now divide into two groups, those only
involving B,, = V|, »,;, and those only involving Vv, The second group consists only of the
term in I*#V,v,. Now we saw above that along / we may specify v, and V, v, arbitrarily. It is
easily seen that this is equivalent to giving A, and B,, of (11.18), together with Vv, arbitrarily.
The identical vanishing of the left hand side of (11.17) implies that the coefficient of V,,
vanishes, and hence

Ik £ g, (11.25)

On treating this similarly to (11.19), we find that there exists a vector field p*(s) such that
e = pym, (11.26)

which completes the proofofresult (iv). We now also use thisin (11.16), by deducing from (11.26),

(6.48) and (6.55) that
'V, 0, = pA84,/ds — ay) + v B, . (11.27)

This is again applicable in (11.17) with w, = v,, @, = 0. The resulting form of the left hand side of
(11.17) involves v, only in the form of 4, and B,,, both of which are arbitrary. On integrating
by parts the two terms involving s-derivatives of 4, and B,,, we then recover the equations of
motion (8.50), except that p* and S¥* are replaced by j* and S«* respectively. This is the required

result (v).
On using these above results, we can simplify (11.16) to the form

[ds [ (eup TPur =, T +xJ7) AT, = I[Ey, ] + [ ds[a (4" =) + $ba (S - S, (11.28)

The arbitrary fields @, and 4,, occur only in the final integral, which must thus vanish identically,
giving o

ﬁx :pk, SkA — Slc)l’ (1129)

which is result (vi). The remainder of equation (11.28) then gives the integral over s of (8.14),
from which (8.14) itself can be derived following the method used in § 7 to similarly treat (7.29).
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Since (8.14) was our provisional definition of the moments of 7*#, this completes the proof of
result (iii).

It remains only to prove (vii). This is equivalent to showing that we have extracted all the in-
formation contained in (11.16) and its electromagnetic analogue (7.28), so that these equations
are identically satisfied. A scrutiny of the above calculations shows that this is indeed so. Alterna-
tively a direct proof could be given, as was done for result (vi) of § 7. This completes the proof.

12. EQUATIONS OF MOTION

We now study in more detail the equations of motion given by (8.50), so as to obtain separate
equations for 5p*/ds and 85*#/ds. We first show that its right hand side has vanishing contributions
from I, [*# and m?, so that p*, $** and ¢ appear only on the left hand side of this equation.
On using (11, 7.2), we find that the contribution from these moments to this right hand side is

N L G + 36KV o L Go) +m Ly D). (12.1)

The third term of this vanishes by (8.42) and (8.46). Fach of the other two terms can be seen to
also vanish, by the same method, on using

<GK/\> = &r <VocGK/\> =0 and <V/tGK/\> = O> (12'2)
which follow from (10.14), (10.17) and (1I, A18).
Let us now write © (i)
D e a RTY M LB T (12.3)
n=2 M. ! "
. (="
and mhe= 3] ——n'——kkl...kKanl~~-Kn/‘, (12.4)
n=1 .

which differ from /% and #* only by the omission of the first two and one terms respectively. Then
the above calculation shows that we can replace I** and 7i* in (8.50) by [A* and #* respectively.
Note also that (4.17) and (4.18) imply the identities

Fafy =0, K, =0, (12.5)
from which we can deduce by differentiation that
I, =-kVyl,, h,=—kV,h. (12.6)

Since equations (3.26) and (6.70) agree, we can use (3.27) to evaluate the Lie derivatives in
(8.50). The coefficients of the arbitrary fields 4, and B, can then be separately equated to zero to
give the two desired equations of motion. After an integration by parts and the use of (12.6),
the resulting equations can be put in the form

Bpk/ds = %‘vAS/wRKA/w - qv/\FKA + (2‘”) _4J Dk {%[A/LVK*GAIIL + m/\vk*éh} (127)
and 8S,/ds = 2prvy+2(2m) 41 [ DE{G 1, Vs I17 = B 1 Voo 10}, (12.8)
where Dot =2VyuPy, Gyt = §Ve Gy (12.9)

The new fields defined in (12.9) are just the coefficients of 4* in (8.49). They have a simple in-
terpretation, which was discussed in the paragraph following equation (8.52). Note that @,,
is the f,, of (10.17); the notation @,, seems more coherent, but it could not be used in §10 as
D, there had a different meaning.
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An equivalent but slightly simpler form can be given to these equations with the use of general-
ized functions. Although the inverse Fourier transforms of /* and #* do not exist as ordinary
functions, they do exist as generalized functions (distributions). They are real, and have compact
support on each tangent space 7. It is actually more convenient to use the inverse Fourier
transforms of their complex conjugates rather than of these functions themselves. We shall denote
them by 72« (5, X) and J2(s, X) respectively, due to their close connexion with the corresponding
tensor fields 7*#(x) and J*(x). Then on using (2.27) and (II, 2.6), we can write (12.7) and (12.8)

as
Spk/dé’ = %UAS/“‘RK/\[LV - qv/\FK/\ +f DX[% T/\'HVK* G/\p + j/\vx* gﬁ/\] (12’ 10)

and 88 /ds = 20y +2 [ DX[Judb Xy — TG, X, 1. (12.11)

In this form the expression for the couple, given by the integral in (12.11), shows up as the
moment of an ‘apparent force density’ N
JED = TG, (12.12)
When viewed in normal coordinates about z, as discussed in § 8, this bears a remarkable resem-
blance to the right hand side of the form

Cay 0 TV = JF TPy, a (12.13)

of the conservation law (1.32). Note, however, that the ‘apparent force density’ given by the
integrand in (12.10) differs from (12.12). This is perhaps to be expected, since the corresponding
‘apparent momentum densities’ used in the equations (8.12) and (8.13) which define p* and
S« also differ.

13. MULTIPOLE APPROXIMATIONS

The forms of the equations of motion given in the preceding section are exact. Consequently,
they are valid even for ‘massive bodies’, when the fields g,, and F,; include self-contributions
from the body whose motion is being investigated. But they are rather difficult to handle, since
they involve an integration whose integrand contains an infinite series in the multipole moments
of the body. Now if the external field, i.e. that due to all bodies other than the one under considera-
tion, varies sufficiently gradually over a spacelike section of the body, we might expect that the
contributions from the higher order moments would be negligible. This speculation is based on
the corresponding Newtonian result, in which theory the separation of the external field from the
self-field is trivial, and the vanishing of the resultant self-force and self-couple is easily proved.
In general relativity, however, there is no natural way of separating the external and self-fields.
As a result, the above speculation is difficult even to formulate in more precise terms unless the
self-field of the body is negligible. In this case the body is called a ‘test body’.

In the present section we shall restrict ourselves to test bodies. The author hopes to return to
the case of a massive body in a subsequent paper. The external fields are then the full fields
appearing in (12.7) and (12.8). We shall thus suppose that G, and @, vary slowly throughout a
neighbourhood of §. This may be made precise by the method used by Dixon (1967, §6) for
the case of special relativity, and the techniques used there may then be used to justify the above
speculation for this case. A good approximation to the equations of motion is thus obtained by
truncating the series (12.3) and (12.4) for /*# and 7" after only a finite number of terms. If the
highest order terms retained involve the 2¥-pole moments, this is known as the 2¥-pole moment
approximation.
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When this is done, the £-space integrations in (12.7) and (12.8) can be performed explicitly.
Consider the contribution to the integral in (12.7) from the 2”-pole moment of 7%, We first
use (2.17) and (2.20) to show that

kalc,,1 ik, Ve Gy, = V,chkk,,1 ok, Gy, (13.1)
But by repeated use of (2.27) together with the Fourier inversion theorem, we also have that
(=i)*[Dkk,, ...k, Gy, = (21)4[Vao. ., Grp(2 X) ] xm0- (13.2)

This right hand side is an ordinary tensor at z. On using (10.17) together with the interpretation
of the relation (8.16) given in the paragraph following that equation, we see that in any normal
coordinate system with pole at z, this tensor reduces to the repeated partial derivative

avl...vng/\/u(z)'

‘The unique tensor field satisfying this is the nth extension of g, ,, introduced by Veblen & Thomas
(1923), and we follow them in denoting it by g;,,,,...,,- Extensions are also discussed by Schouten
(1954, ch. III, §7). Note that the first extension of a tensor is simply its covariant derivative,
but that higher extensions are not simply repeated covariant derivatives. Some formulae useful
in calculating such higher extensions are given in appendix 2. We have now shown that

( ~i)nkakv1 kvnvlc*é/\,u = (zn)4vxg/1ﬂ, Vievpt (133)

The corresponding contribution from J* requires the evaluation of [Vy,, , @]x- This
differs from (13.2) in that @, is not the image of any tensor field under Exp4; instead, it is defined
in terms of F,; by (8.8). We deal with this by expressing it in terms of @, , by (12.9), and then
recalling that @, , = Exp4 F,,. From (12.9), we have

V*v, vip ¢[L - V*/wl...vnﬁl ¢Vn = V*vl...vn_l (bvn/\' (13‘4)
But from (8.85) and (8.39) we get X?®, = 0, which by repeated differentiation gives
va*vl...vn,u (pp + V*vl...vn (pp + nV*/t(Vl...vnﬂ Qvn) = 0. (135)

If we evaluate (13.5) at X» = 0, we can use it to symmetrize (13.4) over v, ... ¥, to give

n
[V*vl,..vnq)/l]X=0 = —F/l(vl, Vaunvp)® (136)
n+1

The corresponding integrations in (12.8) are straightforward. We thus see that the equations
of motion in the 2¥-pole moment approximation are

1y 1 N n
Spklds = %UASIM"RKA/LV —- qU'\FK,\ + ,2_n§2;z_' [P A,HVK xpvy.ovp + n§1 (—n—m mh-..unz\VKF/\(Vh o)
(13.7)
] N-11 N-14
and  B8Ods = 24 T g TGy 42 S gt L (18.8)

This is the final form in which we give the equations of motion. The advantages of this treatment
of the multipole approximation over that of other authors were discussed in the Introduction.
In a flat space-time in a Minkowskian coordinate system, when the forces are purely electro-
magnetic, both the covariant derivative and extension operations reduce to partial differentia-
tion. The above equations then reduce to those obtained by Dixon (1967) for that case. The

15 Vol. 277. A.
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tensorial extensions needed to evaluate (13.7) and (13.8) in the octopole approximation are
given, from the results of appendix 2, by

g)(,,,,,,p = _%R/\(up)/u g)\,“,VPO' = —V(VRM'P")/“’ } (13_9)

F/\/I,,V = VVF)(/U FA/L, vp = V(Vp)FA;c'I_%FC.r[/\R

Wp o
We may give a general form for the gravitational terms in (13.7) and (13.8) if we work only to
first order in the curvature tensor. From (A 2.4) and (A 2.7) we see that

2(n—1)

Eap, VieeVp n+1 (V;,...VnRiz\l vy

= + O(R?) (13.10)
ifn > 2. For the cases n = 2, 3, the O(R?) terms are absent and we recover (13.9), but they are
nonzero for n > 4.

Finally, let us see how to recover the Newtonian equations of motion from (13.7) and (13.8).
These arise from the equations governing the purely spacelike components of p, and ¥, as the
equations governing p, and $°! are energy equations. The recovery of Newtonian results from the
latter requires a more detailed investigation than we wish to give here. We shall let latin indices
run from 1 to 3, and shall consider only the purely gravitational case.

To the required order, the only component of the metric tensor which differs significantly
from the Minkowskian values g, = diag (1, —1, —1, —1) is go,. If ¢ is the Newtonian gravita-
tional potential, we have gy, = 1+ 2¢. We evaluate the moments by treating the space-time as
flat and taking n¢ = 0. Equations (5.35) and (5.36) then show that I*1~*»# vanishes, for n > 2,
if three or more indices are zero. Taken together with the above remarks about the metric, this
shows that the only I’s that contribute to the equations of motion in this approximation are
T-an00 > 2 To evaluate these, put 7% = p, the Newtonian mass density, and define its New-
tonian moments as in (1.9). Then we obtain from §9 that

Ial...anoﬂ —_ mal.'-un (13.11)
ifn > 2, and from (8.12) and (8.13) that _
py=m, S®=m, (13.12)

We also have, to this order, that

]120 =0,0, 15 =20,9, RaObO = ab¢' (13-13)

The Newtonian velocity v,, and the momentum p, and spin S, of (1.4), can be identified with
the purely spacelike components of v*, p* and §*# respectively. However, because of the signature
of our space-time metric, this identification must be performed with all the relativistic indices
being superscripts, otherwise discrepancies of sign will occur. If the above values are now sub-
stituted into (13.7) for ¥ = a, and (13.8) for ¥ = e and A = b, we obtain the Newtonian equations
(1.7) and (1.8) as required.

14, DiscussioN

It is unnecessary to conclude with a summary, since one is contained in outline in the Intro-
duction, and in more detail in §§ 10 and 13 together, so that instead, it is sufficient to make some
general remarks. This paper concludes the main programme of work initiated in I (Dixon 19704)
and continued in IT (Dixon 19704), giving a detailed analysis of the moment structure of the
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energy-momentum tensor 7% and charge-current vector J* of an extended body in general
relativity. We saw in the Introduction the difficulties that arise if unsuitable moments are used
in the equations of motion, and we there noted guidelines that suitable moments should satisfy.
We have now found such moments, the reduced moments of 7% and J#, and have expressed the
equations of motion in terms of them. In the course of doing so, it has become clear that the
original guidelines we laid down are so restrictive that there is little arbitrariness left in the
choice of moments. It should thus no longer be surprising that the a priori guesses used in the earlier
theories discussed in the Introduction turned out to be unsuitable. By turning the problem around
and first studying the moment structure of the body, we have been able to avoid all the difficulties
of these earlier theories, and to give an explicit form for the equations of motion correct to any
desired multipole order.

One slight inconsistency in notation between the three papers needs to be mentioned. In
parametrizing the world line [ as z*(s), we took s to be the proper time in I and II, but in the
present paper we have left it arbitrary. This choice gave rise in I to the factor y appearing in the
equations (I, 7.4) and (I, 7.5), which was introduced to simplify the treatment given there of
energy transfer between the field and the body. It also caused a discrepancy of a factor of y
between the moments of J* as defined in II, and as used in I. By leaving s arbitrary in the present
treatment, we are leaving an undetermined scale factor in all the moments; a change of variable
s = 5" would multiply all the moments except p*, $* and ¢ by ds/ds’. If we take s as the proper
time, we get agreement with I1. If we determine s so that v*u, = 1, where u, is a unit vector parallel
to p,, we get agreement with I. The equations of motion are invariant in form under such a
change of parameter. Incorporating this factor of y into the choice of s thus gives the advantages
of the scaling of the moments used in I without the disadvantage of the scaling factor appearing
explicitly. The development given in IT holds also, almost without alteration, for a general choice
of s.

Further consequences of the equations of motion will be developed in a later paper. This will
include a treatment of energy absorption along the lines indicated in outline in I.
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APPENDIX 1. SUMMARY OF NOTATION AND CONVENTIONS

Space-time is considered as a four-dimensional pseudo-Riemannian manifold of class C*,
with metric tensor g, ; of signature — 2 and Riemannian connexion I,. Covariant differentiation
is denoted by V,, partial differentiation by 0,. In repeated differentiation, the kernel V or 0
is only written once, e.g. V,;4,: = V,V,4,. Here, as elsewhere, a colon placed before an equals
sign indicates that the equation is to be regarded as defining the quantity on the left hand side.
The scalar product g,,a*b of two vectors is written as a.b. The unit tensor is denoted by A43.

Symmetrization and antisymmetrization of indices is denoted by () and [ ] respectively,
indices to be omitted from these operations being enclosed between vertical lines, e.g.

A[a{ﬂ!'y] = %(Aacﬁ'y_A'yﬁa)' (A 1.1)

Both of these symbols may be used around any number of indices. In addition, we define two
special index permutations, for three and four indices respectively, by writing

A{aﬂv} = Aaﬂv
and A[alpy] a=1(4 afys Ay/ms - Ausy,b’ + Ayd‘a/?)' (A1.3)

In these, as in most of our conventions, we follow Schouten (1954).

"Aﬂya+Avaﬂ (AI'Q)

The sign of the curvature tensor is such that the Ricci identity for a covariant vector 4, is

The electromagnetic field tensor F,; is taken such that in flat spacetime, with Minkowskian
coordinates with metric tensor g,, = diag (1, —1, —1, —1), the electric and magnetic field
vectors in the 3-spaces % = constant are given by

E = (F*, F2 Fo3), H = (F%, F1, F12), (A1.5)

Here, as elsewhere, 3-vectors are denoted by bold face type. The charge-current vector J2 is
such that J* = pv* for a charge distribution with density p and velocity »=.

For the theory of bitensors, we follow closely the notation of DeWitt & Brehme (1960). As
these quantities have tensor character at more than one point, it is necessary to indicate the
point associated with each index. Unless otherwise stated, we shall always label the points
involved as x and z, and use &, 3, ... asindices at x and «, A, ... at z. With this convention we may
unambiguously write 4* and 4% to denote the value of a vector field 4* at x and z respectively.
If x(u) is the parametric form of a geodesic joining z = x(x,) and y = x(u,), with  an affine para-
meter along it, the world function biscalar o (x, z) is defined by

% dxxdxf

7(2,)s = Hutg= ) [ gy (300)) o o (A1.6)

U
It is independent of the particular affine parameter chosen. Covariant derivatives of o will be
denoted simply by appropriate suffixes, e.g. 0,4 = V, V5,0, where, in accordance with the
convention on indices, V;, acts at x and V, at z. The coincidence limit x—z of a bitensor field gives
an ordinary tensor field, denoted by enclosing the bitensor in diamond brackets { ).

If f and g are any two functions, the composition function x> f(g(x)) will be denoted by
fog, whenever this composition is meaningful. Equation numbers preceded by I or II refer to
equations in papers I and II of this series respectively.
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APPENDIX 2. EXTENSIONS AND NORMAL TENSORS

If a tensor field 7 of type (r,s) is given, then for each integer n > 1 there exists a unique tensor
field of type (r,s+n) which reduces, at the pole of any normal coordinate system, to the n-fold
repeated partial derivative of 7". This is known as the nth extension of T. The additional n tensor
indices will either be suffixed to 7" and separated by a comma from the original indices, or
written as an operator E, ., thus E4t,5 =14 ,5. The concept is due to Veblen & Thomas
(1923), and much information on its properties can be found therein.

The first extension is simply the ordinary covariant derivative. To relate higher extensions
to repeated covariant derivatives, we use the related concept of normal tensors. The nth normal ten-
sor field &;, . 5% is the unique tensor field which reduces, at the pole of any normal coordinate
system, to 9, , I73,. It thus satisfies

No i = Negoinin®  Ney.anpp® = 0, (A2.1)
and the first two are given, in their totally covariant form, by

Nps = 2R
Bys 3talgy) s
! (A2.2)
and Nocﬂ‘yr?e = %V(o&R/y’)(‘yN e %V(YRS)(a/J’)e'J
"The extensions of a covariant vector v, may be sequentially evaluated in terms of covariant deri-
vatives and normal tensors using the recurrence relation

n n s—1
Eal.,.anvﬂ = V(a, ) Vs +r§2 s§r (T _ 1) ]v(a.cl ,..&,liily E"‘r+1m“s Vocsﬂ...an)vy’ (A2'3)

where the (r) are binomial coefficients. For a covariant tensor of higher degree, one set of terms

such as is given here occurs for each tensor index in the obvious manner. On applying this result
to the metric tensor, we get

n-2(p__1 .
sy, gty 2N(a1...an)(/:’y) + 2 r§2 (7’-— 1) A(ﬂgy) 8,(&1...a,N&r+1...¢;zn)€'8' (A 24)

Note that in (A2.3) and (A2.4), the normal tensors only occur in the form of their partial
symmetrizations N, . g .5 These may easily be evaluated to first order in the curvature ten-
sor as follows. By differentiating the defining relation for the curvature tensor, we get

Ve anBiys® = 204 ays s +0(1), (A2.5)

AL

where O(I™) denotes terms at least quadratic in /', and its derivatives. By considering this at
the pole of a normal coordinate system, we see that it implies

Vazl...a.,LRﬂyse = 2Naz1..¢an[ﬂy18e + O(R2), (A 2'6)

where O(R?) denotes terms at least quadratic in the curvature tensor. It then follows from (A 2.1)
and (A2.6) thatforn > 2,

n—1

Neayagpy = Tari

V(aa...a R

n Al ag) y

+O(R?). (A2.7)

The higher order terms may be obtained if desired by including the omitted terms in the above.
They are easily seen to be absent in (A 2.6) if » = 0 or 1, and hence also in (A2.7) ifn = 2 or 3.
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